Published by Apress (edition 1st ed.), 2021
ISBN 10: 1484273400 ISBN 13: 9781484273401
Language: English
Seller: BooksRun, Philadelphia, PA, U.S.A.
First Edition
Paperback. Condition: Very Good. 1st ed. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting.
Seller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condition: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New.
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. State-Of-The-Art Deep Learning Models in Tensorflow: Modern Machine Learning in the Google Colab Ecosystem. Book.
Seller: Lakeside Books, Benton Harbor, MI, U.S.A.
Condition: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition.
Seller: California Books, Miami, FL, U.S.A.
Condition: New.
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
First Edition
Paperback. Condition: new. Paperback. Use TensorFlow 2.x in the Google Colab ecosystem to create state-of-the-art deep learning models guided by hands-on examples. The Colab ecosystem provides a free cloud service with easy access to on-demand GPU (and TPU) hardware acceleration for fast execution of the models you learn to build. This book teaches you state-of-the-art deep learning models in an applied manner with the only requirement being an Internet connection. The Colab ecosystem provides everything else that you need, including Python, TensorFlow 2.x, GPU and TPU support, and Jupyter Notebooks.The book begins with an example-driven approach to building input pipelines that feed all machine learning models. You will learn how to provision a workspace on the Colab ecosystem to enable construction of effective input pipelines in a step-by-step manner. From there, you will progress into data augmentation techniques and TensorFlow datasets to gain a deeper understanding of how to work with complex datasets. You will find coverage of Tensor Processing Units (TPUs) and transfer learning followed by state-of-the-art deep learning models, including autoencoders, generative adversarial networks, fast style transfer, object detection, and reinforcement learning.Author Dr. Paper provides all the applied math, programming, and concepts you need to master the content. Examples range from relatively simple to very complex when necessary. Examples are carefully explained, concise, accurate, and complete. Care is taken to walk you through each topic through clear examples written in Python that you can try out and experiment with in the Google Colab ecosystem in the comfort of your own home or office.What You Will LearnTake advantage of the built-in support of the Google Colab ecosystemWork with TensorFlow data setsCreate input pipelines to feed state-of-the-art deep learning modelsCreate pipelined state-of-the-art deep learning models with clean and reliable Python codeLeverage pre-trained deep learning models to solve complex machine learning tasksCreate a simple environment to teach an intelligent agent to make automated decisionsWho This Book Is ForReaders who want to learn the highly popular TensorFlow deep learning platform, those who wish to master the basics of state-of-the-art deep learning models, and those looking to build competency with a modern cloud service tool such as Google Colab Intermediate-Advanced user level Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Seller: Rarewaves USA, OSWEGO, IL, U.S.A.
First Edition
Paperback. Condition: New. 1st ed. Use TensorFlow 2.x in the Google Colab ecosystem to create state-of-the-art deep learning models guided by hands-on examples. The Colab ecosystem provides a free cloud service with easy access to on-demand GPU (and TPU) hardware acceleration for fast execution of the models you learn to build. This book teaches you state-of-the-art deep learning models in an applied manner with the only requirement being an Internet connection. The Colab ecosystem provides everything else that you need, including Python, TensorFlow 2.x, GPU and TPU support, and Jupyter Notebooks.The book begins with an example-driven approach to building input pipelines that feed all machine learning models. You will learn how to provision a workspace on the Colab ecosystem to enable construction of effective input pipelines in a step-by-step manner. From there, you will progress into data augmentation techniques and TensorFlow datasets to gain a deeper understanding of how to work with complex datasets. You will find coverage of Tensor Processing Units (TPUs) and transfer learning followed by state-of-the-art deep learning models, including autoencoders, generative adversarial networks, fast style transfer, object detection, and reinforcement learning.Author Dr. Paper provides all the applied math, programming, and concepts you need to master the content. Examples range from relatively simple to very complex when necessary. Examples are carefully explained, concise, accurate, and complete. Care is taken to walk you through each topic through clear examples written in Python that you can try out and experiment with in the Google Colab ecosystem in the comfort of your own home or office.What You Will LearnTake advantage of the built-in support of the Google Colab ecosystemWork with TensorFlow data setsCreate input pipelines to feed state-of-the-art deep learning modelsCreate pipelined state-of-the-art deep learning models with clean and reliable Python codeLeverage pre-trained deep learning models to solve complex machine learning tasksCreate a simple environment to teach an intelligent agent to make automated decisionsWho This Book Is ForReaders who want to learn the highly popular TensorFlow deep learning platform, those who wish to master the basics of state-of-the-art deep learning models, and those looking to build competency with a modern cloud service tool such as Google Colab.
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
£ 52.25
Convert currencyQuantity: Over 20 available
Add to basketCondition: As New. Unread book in perfect condition.
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
£ 53.89
Convert currencyQuantity: Over 20 available
Add to basketCondition: New.
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
First Edition
£ 70.53
Convert currencyQuantity: 8 available
Add to basketPaperback. Condition: New. 1st ed. Use TensorFlow 2.x in the Google Colab ecosystem to create state-of-the-art deep learning models guided by hands-on examples. The Colab ecosystem provides a free cloud service with easy access to on-demand GPU (and TPU) hardware acceleration for fast execution of the models you learn to build. This book teaches you state-of-the-art deep learning models in an applied manner with the only requirement being an Internet connection. The Colab ecosystem provides everything else that you need, including Python, TensorFlow 2.x, GPU and TPU support, and Jupyter Notebooks.The book begins with an example-driven approach to building input pipelines that feed all machine learning models. You will learn how to provision a workspace on the Colab ecosystem to enable construction of effective input pipelines in a step-by-step manner. From there, you will progress into data augmentation techniques and TensorFlow datasets to gain a deeper understanding of how to work with complex datasets. You will find coverage of Tensor Processing Units (TPUs) and transfer learning followed by state-of-the-art deep learning models, including autoencoders, generative adversarial networks, fast style transfer, object detection, and reinforcement learning.Author Dr. Paper provides all the applied math, programming, and concepts you need to master the content. Examples range from relatively simple to very complex when necessary. Examples are carefully explained, concise, accurate, and complete. Care is taken to walk you through each topic through clear examples written in Python that you can try out and experiment with in the Google Colab ecosystem in the comfort of your own home or office.What You Will LearnTake advantage of the built-in support of the Google Colab ecosystemWork with TensorFlow data setsCreate input pipelines to feed state-of-the-art deep learning modelsCreate pipelined state-of-the-art deep learning models with clean and reliable Python codeLeverage pre-trained deep learning models to solve complex machine learning tasksCreate a simple environment to teach an intelligent agent to make automated decisionsWho This Book Is ForReaders who want to learn the highly popular TensorFlow deep learning platform, those who wish to master the basics of state-of-the-art deep learning models, and those looking to build competency with a modern cloud service tool such as Google Colab.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
£ 61.22
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. In English.
Seller: Chiron Media, Wallingford, United Kingdom
£ 58.37
Convert currencyQuantity: 10 available
Add to basketPF. Condition: New.
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
First Edition
£ 69.99
Convert currencyQuantity: 15 available
Add to basketCondition: New. 2021. 1st ed. paperback. . . . . .
Seller: Kennys Bookstore, Olney, MD, U.S.A.
Condition: New. 2021. 1st ed. paperback. . . . . . Books ship from the US and Ireland.
Seller: Revaluation Books, Exeter, United Kingdom
£ 67.04
Convert currencyQuantity: 2 available
Add to basketPaperback. Condition: Brand New. 398 pages. 10.00x7.01x0.91 inches. In Stock.
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. 1st ed. edition NO-PA16APR2015-KAP.
Seller: Rarewaves USA United, OSWEGO, IL, U.S.A.
First Edition
Paperback. Condition: New. 1st ed. Use TensorFlow 2.x in the Google Colab ecosystem to create state-of-the-art deep learning models guided by hands-on examples. The Colab ecosystem provides a free cloud service with easy access to on-demand GPU (and TPU) hardware acceleration for fast execution of the models you learn to build. This book teaches you state-of-the-art deep learning models in an applied manner with the only requirement being an Internet connection. The Colab ecosystem provides everything else that you need, including Python, TensorFlow 2.x, GPU and TPU support, and Jupyter Notebooks.The book begins with an example-driven approach to building input pipelines that feed all machine learning models. You will learn how to provision a workspace on the Colab ecosystem to enable construction of effective input pipelines in a step-by-step manner. From there, you will progress into data augmentation techniques and TensorFlow datasets to gain a deeper understanding of how to work with complex datasets. You will find coverage of Tensor Processing Units (TPUs) and transfer learning followed by state-of-the-art deep learning models, including autoencoders, generative adversarial networks, fast style transfer, object detection, and reinforcement learning.Author Dr. Paper provides all the applied math, programming, and concepts you need to master the content. Examples range from relatively simple to very complex when necessary. Examples are carefully explained, concise, accurate, and complete. Care is taken to walk you through each topic through clear examples written in Python that you can try out and experiment with in the Google Colab ecosystem in the comfort of your own home or office.What You Will LearnTake advantage of the built-in support of the Google Colab ecosystemWork with TensorFlow data setsCreate input pipelines to feed state-of-the-art deep learning modelsCreate pipelined state-of-the-art deep learning models with clean and reliable Python codeLeverage pre-trained deep learning models to solve complex machine learning tasksCreate a simple environment to teach an intelligent agent to make automated decisionsWho This Book Is ForReaders who want to learn the highly popular TensorFlow deep learning platform, those who wish to master the basics of state-of-the-art deep learning models, and those looking to build competency with a modern cloud service tool such as Google Colab.
Seller: AussieBookSeller, Truganina, VIC, Australia
First Edition
£ 96.92
Convert currencyQuantity: 1 available
Add to basketPaperback. Condition: new. Paperback. Use TensorFlow 2.x in the Google Colab ecosystem to create state-of-the-art deep learning models guided by hands-on examples. The Colab ecosystem provides a free cloud service with easy access to on-demand GPU (and TPU) hardware acceleration for fast execution of the models you learn to build. This book teaches you state-of-the-art deep learning models in an applied manner with the only requirement being an Internet connection. The Colab ecosystem provides everything else that you need, including Python, TensorFlow 2.x, GPU and TPU support, and Jupyter Notebooks.The book begins with an example-driven approach to building input pipelines that feed all machine learning models. You will learn how to provision a workspace on the Colab ecosystem to enable construction of effective input pipelines in a step-by-step manner. From there, you will progress into data augmentation techniques and TensorFlow datasets to gain a deeper understanding of how to work with complex datasets. You will find coverage of Tensor Processing Units (TPUs) and transfer learning followed by state-of-the-art deep learning models, including autoencoders, generative adversarial networks, fast style transfer, object detection, and reinforcement learning.Author Dr. Paper provides all the applied math, programming, and concepts you need to master the content. Examples range from relatively simple to very complex when necessary. Examples are carefully explained, concise, accurate, and complete. Care is taken to walk you through each topic through clear examples written in Python that you can try out and experiment with in the Google Colab ecosystem in the comfort of your own home or office.What You Will LearnTake advantage of the built-in support of the Google Colab ecosystemWork with TensorFlow data setsCreate input pipelines to feed state-of-the-art deep learning modelsCreate pipelined state-of-the-art deep learning models with clean and reliable Python codeLeverage pre-trained deep learning models to solve complex machine learning tasksCreate a simple environment to teach an intelligent agent to make automated decisionsWho This Book Is ForReaders who want to learn the highly popular TensorFlow deep learning platform, those who wish to master the basics of state-of-the-art deep learning models, and those looking to build competency with a modern cloud service tool such as Google Colab Intermediate-Advanced user level Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Seller: Rarewaves.com UK, London, United Kingdom
First Edition
£ 64.16
Convert currencyQuantity: 8 available
Add to basketPaperback. Condition: New. 1st ed. Use TensorFlow 2.x in the Google Colab ecosystem to create state-of-the-art deep learning models guided by hands-on examples. The Colab ecosystem provides a free cloud service with easy access to on-demand GPU (and TPU) hardware acceleration for fast execution of the models you learn to build. This book teaches you state-of-the-art deep learning models in an applied manner with the only requirement being an Internet connection. The Colab ecosystem provides everything else that you need, including Python, TensorFlow 2.x, GPU and TPU support, and Jupyter Notebooks.The book begins with an example-driven approach to building input pipelines that feed all machine learning models. You will learn how to provision a workspace on the Colab ecosystem to enable construction of effective input pipelines in a step-by-step manner. From there, you will progress into data augmentation techniques and TensorFlow datasets to gain a deeper understanding of how to work with complex datasets. You will find coverage of Tensor Processing Units (TPUs) and transfer learning followed by state-of-the-art deep learning models, including autoencoders, generative adversarial networks, fast style transfer, object detection, and reinforcement learning.Author Dr. Paper provides all the applied math, programming, and concepts you need to master the content. Examples range from relatively simple to very complex when necessary. Examples are carefully explained, concise, accurate, and complete. Care is taken to walk you through each topic through clear examples written in Python that you can try out and experiment with in the Google Colab ecosystem in the comfort of your own home or office.What You Will LearnTake advantage of the built-in support of the Google Colab ecosystemWork with TensorFlow data setsCreate input pipelines to feed state-of-the-art deep learning modelsCreate pipelined state-of-the-art deep learning models with clean and reliable Python codeLeverage pre-trained deep learning models to solve complex machine learning tasksCreate a simple environment to teach an intelligent agent to make automated decisionsWho This Book Is ForReaders who want to learn the highly popular TensorFlow deep learning platform, those who wish to master the basics of state-of-the-art deep learning models, and those looking to build competency with a modern cloud service tool such as Google Colab.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
£ 71.92
Convert currencyQuantity: 2 available
Add to basketTaschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Use TensorFlow 2.x in the Google Colab ecosystem to create state-of-the-art deep learning models guided by hands-on examples. The Colab ecosystem provides a free cloud service with easy access to on-demand GPU (and TPU) hardware acceleration for fast execution of the models you learn to build. This book teaches you state-of-the-art deep learning models in an applied manner with the only requirement being an Internet connection. The Colab ecosystem provides everything else that you need, including Python, TensorFlow 2.x, GPU and TPU support, and Jupyter Not Elektronisches Buch.The book begins with an example-driven approach to building input pipelines that feed all machine learning models. You will learn how to provision a workspace on the Colab ecosystem to enable construction of effective input pipelines in a step-by-step manner. From there, you will progress into data augmentation techniques and TensorFlow datasets to gain a deeper understanding of how to work with complex datasets. You will find coverage of Tensor Processing Units (TPUs) and transfer learning followed by state-of-the-art deep learning models, including autoencoders, generative adversarial networks, fast style transfer, object detection, and reinforcement learning.Author Dr. Paper provides all the applied math, programming, and concepts you need to master the content. Examples range from relatively simple to very complex when necessary. Examples are carefully explained, concise, accurate, and complete. Care is taken to walk you through each topic through clear examples written in Python that you can try out and experiment with in the Google Colab ecosystem in the comfort of your own home or office.What You Will LearnTake advantage of the built-in support of the Google Colab ecosystemWork with TensorFlow data setsCreate input pipelines to feed state-of-the-art deep learning modelsCreate pipelined state-of-the-art deep learning models with clean and reliable Python codeLeverage pre-trained deep learning models to solve complex machine learning tasksCreate a simple environment to teach an intelligent agent to make automated decisionsWho This Book Is ForReaders who want to learn the highly popular TensorFlow deep learning platform, those who wish to master the basics of state-of-the-art deep learning models, and those looking to build competency with a modern cloud service tool such as Google Colab 400 pp. Englisch.
Published by Springer, Berlin|Apress, 2021
ISBN 10: 1484273400 ISBN 13: 9781484273401
Language: English
Seller: moluna, Greven, Germany
£ 57.66
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Intermediate-Advanced user levelUse TensorFlow 2.x in the Google Colab ecosystem to create state-of-the-art deep learning models guided by hands-on examples. The Colab ecosystem provides a free cloud service with easy access to on-demand GPU (and.
Seller: Majestic Books, Hounslow, United Kingdom
£ 98.64
Convert currencyQuantity: 4 available
Add to basketCondition: New. Print on Demand.
Seller: Biblios, Frankfurt am main, HESSE, Germany
£ 103.54
Convert currencyQuantity: 4 available
Add to basketCondition: New. PRINT ON DEMAND.
Published by Apress, Apress Aug 2021, 2021
ISBN 10: 1484273400 ISBN 13: 9781484273401
Language: English
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
£ 71.92
Convert currencyQuantity: 1 available
Add to basketTaschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Use TensorFlow 2.x in the Google Colab ecosystem to create state-of-the-art deep learning models guided by hands-on examples. The Colab ecosystem provides a free cloud service with easy access to on-demand GPU (and TPU) hardware acceleration for fast execution of the models you learn to build. This book teaches you state-of-the-art deep learning models in an applied manner with the only requirement being an Internet connection. The Colab ecosystem provides everything else that you need, including Python, TensorFlow 2.x, GPU and TPU support, and Jupyter Not Elektronisches Buch.The book begins with an example-driven approach to building input pipelines that feed all machine learning models. You will learn how to provision a workspace on the Colab ecosystem to enable construction of effective input pipelines in a step-by-step manner. From there, you will progress into data augmentation techniques and TensorFlow datasets to gain a deeper understanding of how to work with complex datasets. You will find coverage of Tensor Processing Units (TPUs) and transfer learning followed by state-of-the-art deep learning models, including autoencoders, generative adversarial networks, fast style transfer, object detection, and reinforcement learning.Author Dr. Paper provides all the applied math, programming, and concepts you need to master the content. Examples range from relatively simple to very complex when necessary. Examples are carefully explained, concise, accurate, and complete. Care is taken to walk you through each topic through clear examples written in Python that you can try out and experiment with in the Google Colab ecosystem in the comfort of your own home or office.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 400 pp. Englisch.
Seller: AHA-BUCH GmbH, Einbeck, Germany
£ 74.38
Convert currencyQuantity: 1 available
Add to basketTaschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Use TensorFlow 2.x in the Google Colab ecosystem to create state-of-the-art deep learning models guided by hands-on examples. The Colab ecosystem provides a free cloud service with easy access to on-demand GPU (and TPU) hardware acceleration for fast execution of the models you learn to build. This book teaches you state-of-the-art deep learning models in an applied manner with the only requirement being an Internet connection. The Colab ecosystem provides everything else that you need, including Python, TensorFlow 2.x, GPU and TPU support, and Jupyter Not Elektronisches Buch.The book begins with an example-driven approach to building input pipelines that feed all machine learning models. You will learn how to provision a workspace on the Colab ecosystem to enable construction of effective input pipelines in a step-by-step manner. From there, you will progress into data augmentation techniques and TensorFlow datasets to gain a deeper understanding of how to work with complex datasets. You will find coverage of Tensor Processing Units (TPUs) and transfer learning followed by state-of-the-art deep learning models, including autoencoders, generative adversarial networks, fast style transfer, object detection, and reinforcement learning.Author Dr. Paper provides all the applied math, programming, and concepts you need to master the content. Examples range from relatively simple to very complex when necessary. Examples are carefully explained, concise, accurate, and complete. Care is taken to walk you through each topic through clear examples written in Python that you can try out and experiment with in the Google Colab ecosystem in the comfort of your own home or office.What You Will LearnTake advantage of the built-in support of the Google Colab ecosystemWork with TensorFlow data setsCreate input pipelines to feed state-of-the-art deep learning modelsCreate pipelined state-of-the-art deep learning models with clean and reliable Python codeLeverage pre-trained deep learning models to solve complex machine learning tasksCreate a simple environment to teach an intelligent agent to make automated decisionsWho This Book Is ForReaders who want to learn the highly popular TensorFlow deep learning platform, those who wish to master the basics of state-of-the-art deep learning models, and those looking to build competency with a modern cloud service tool such as Google Colab.