Language: English
Published by Packt Publishing, Limited, 2018
ISBN 10: 178934641X ISBN 13: 9781789346411
Seller: Better World Books: West, Reno, NV, U.S.A.
Condition: Good. Used book that is in clean, average condition without any missing pages.
paperback. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Paperback. Condition: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less.
Paperback. Condition: Fair. No Jacket. Readable copy. Pages may have considerable notes/highlighting. ~ ThriftBooks: Read More, Spend Less.
Condition: very_good.
Paperback. Condition: As New. No Jacket. Pages are clean and are not marred by notes or folds of any kind. ~ ThriftBooks: Read More, Spend Less.
Condition: New.
Condition: New.
Condition: New.
Paperback. Condition: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks.
Condition: As New. Unread book in perfect condition.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
£ 51.30
Quantity: Over 20 available
Add to basketCondition: New. In.
Language: English
Published by Packt Publishing 2018-12-31, 2018
ISBN 10: 178934641X ISBN 13: 9781789346411
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New.
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New.
Language: English
Published by Packt Publishing Limited, GB, 2018
ISBN 10: 178934641X ISBN 13: 9781789346411
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
Paperback. Condition: New. Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and KerasKey FeaturesImplement machine learning algorithms to build, train, and validate algorithmic modelsCreate your own algorithmic design process to apply probabilistic machine learning approaches to trading decisionsDevelop neural networks for algorithmic trading to perform time series forecasting and smart analyticsBook DescriptionThe explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies.This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You'll practice the ML workflow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies.Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym.What you will learnImplement machine learning techniques to solve investment and trading problemsLeverage market, fundamental, and alternative data to research alpha factorsDesign and fine-tune supervised, unsupervised, and reinforcement learning modelsOptimize portfolio risk and performance using pandas, NumPy, and scikit-learnIntegrate machine learning models into a live trading strategy on QuantopianEvaluate strategies using reliable backtesting methodologies for time seriesDesign and evaluate deep neural networks using Keras, PyTorch, and TensorFlowWork with reinforcement learning for trading strategies in the OpenAI GymWho this book is forHands-On Machine Learning for Algorithmic Trading is for data analysts, data scientists, and Python developers, as well as investment analysts and portfolio managers working within the finance and investment industry. If you want to perform efficient algorithmic trading by developing smart investigating strategies using machine learning algorithms, this is the book for you. Some understanding of Python and machine learning techniques is mandatory.
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition.
Language: English
Published by Packt Publishing Limited, United Kingdom, Birmingham, 2018
ISBN 10: 178934641X ISBN 13: 9781789346411
Seller: WorldofBooks, Goring-By-Sea, WS, United Kingdom
Paperback. Condition: Very Good. Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and Keras Key Features Implement machine learning algorithms to build, train, and validate algorithmic models Create your own algorithmic design process to apply probabilistic machine learning approaches to trading decisions Develop neural networks for algorithmic trading to perform time series forecasting and smart analytics Book DescriptionThe explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies. This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You'll practice the ML workflow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies. Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym. What you will learn Implement machine learning techniques to solve investment and trading problems Leverage market, fundamental, and alternative data to research alpha factors Design and fine-tune supervised, unsupervised, and reinforcement learning models Optimize portfolio risk and performance using pandas, NumPy, and scikit-learn Integrate machine learning models into a live trading strategy on Quantopian Evaluate strategies using reliable backtesting methodologies for time series Design and evaluate deep neural networks using Keras, PyTorch, and TensorFlow Work with reinforcement learning for trading strategies in the OpenAI Gym Who this book is forHands-On Machine Learning for Algorithmic Trading is for data analysts, data scientists, and Python developers, as well as investment analysts and portfolio managers working within the finance and investment industry. If you want to perform efficient algorithmic trading by developing smart investigating strategies using machine learning algorithms, this is the book for you. Some understanding of Python and machine learning techniques is mandatory. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged.
Condition: New. With the help of this book, you ll build smart algorithmic models using machine learning algorithms covering tasks such as time series forecasting, backtesting, trade predictions, and more using easy-to-follow examples. By the end, you ll be able to adopt a.
Language: English
Published by Packt Publishing Limited, GB, 2018
ISBN 10: 178934641X ISBN 13: 9781789346411
Seller: Rarewaves.com UK, London, United Kingdom
Paperback. Condition: New. Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and KerasKey FeaturesImplement machine learning algorithms to build, train, and validate algorithmic modelsCreate your own algorithmic design process to apply probabilistic machine learning approaches to trading decisionsDevelop neural networks for algorithmic trading to perform time series forecasting and smart analyticsBook DescriptionThe explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies.This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You'll practice the ML workflow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies.Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym.What you will learnImplement machine learning techniques to solve investment and trading problemsLeverage market, fundamental, and alternative data to research alpha factorsDesign and fine-tune supervised, unsupervised, and reinforcement learning modelsOptimize portfolio risk and performance using pandas, NumPy, and scikit-learnIntegrate machine learning models into a live trading strategy on QuantopianEvaluate strategies using reliable backtesting methodologies for time seriesDesign and evaluate deep neural networks using Keras, PyTorch, and TensorFlowWork with reinforcement learning for trading strategies in the OpenAI GymWho this book is forHands-On Machine Learning for Algorithmic Trading is for data analysts, data scientists, and Python developers, as well as investment analysts and portfolio managers working within the finance and investment industry. If you want to perform efficient algorithmic trading by developing smart investigating strategies using machine learning algorithms, this is the book for you. Some understanding of Python and machine learning techniques is mandatory.
Language: English
Published by Packt Publishing Limited, 2018
ISBN 10: 178934641X ISBN 13: 9781789346411
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Language: English
Published by Packt Publishing Limited, 2018
ISBN 10: 178934641X ISBN 13: 9781789346411
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
£ 52.77
Quantity: Over 20 available
Add to basketPAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Condition: New. Print on Demand.
Language: English
Published by Packt Publishing Limited, 2018
ISBN 10: 178934641X ISBN 13: 9781789346411
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
£ 62.14
Quantity: Over 20 available
Add to basketPaperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Taschenbuch. Condition: Neu. Hands-On Machine Learning for Algorithmic Trading | Design and implement investment strategies based on smart algorithms that learn from data using Python | Stefan Jansen | Taschenbuch | Kartoniert / Broschiert | Englisch | 2018 | Packt Publishing | EAN 9781789346411 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and KerasKey Features:Implement machine learning algorithms to build, train, and validate algorithmic modelsCreate your own algorithmic design process to apply probabilistic machine learning approaches to trading decisionsDevelop neural networks for algorithmic trading to perform time series forecasting and smart analyticsBook Description:The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies.This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You'll practice the ML work¿ow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies.Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym.What You Will Learn:Implement machine learning techniques to solve investment and trading problemsLeverage market, fundamental, and alternative data to research alpha factorsDesign and fine-tune supervised, unsupervised, and reinforcement learning modelsOptimize portfolio risk and performance using pandas, NumPy, and scikit-learnIntegrate machine learning models into a live trading strategy on QuantopianEvaluate strategies using reliable backtesting methodologies for time seriesDesign and evaluate deep neural networks using Keras, PyTorch, and TensorFlowWork with reinforcement learning for trading strategies in the OpenAI GymWho this book is for:Hands-On Machine Learning for Algorithmic Trading is for data analysts, data scientists, and Python developers, as well as investment analysts and portfolio managers working within the finance and investment industry. If you want to perform efficient algorithmic trading by developing smart investigating strategies using machine learning algorithms, this is the book for you. Some understanding of Python and machine learning techniques is mandatory.