Condition: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc.
Condition: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc.
Seller: Greenway, Chattanooga, TN, U.S.A.
paperback. Condition: Very good condition. very clean,fast ship.
Seller: CollegePoint, Inc, Jamestown, TN, U.S.A.
First Edition
Paperback. Condition: Good. 1st Edition. We only honor returns for quality issues and won't accept reasons such as 'change my mind', 'find a better price', or 'school book requirement change', etc.
Condition: Used - Very Good. Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career.Learn how to: Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance Manipulate vectors and matrices and perform matrix decomposition Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market.
Condition: New.
Language: English
Published by O'Reilly Media 7/5/2022, 2022
ISBN 10: 1098102932 ISBN 13: 9781098102937
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. Essential Math for Data Science: Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics. Book.
Seller: Lakeside Books, Benton Harbor, MI, U.S.A.
Condition: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000.
Condition: New.
Condition: As New. Unread book in perfect condition.
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000.
Condition: New.
Paperback. Condition: New. To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus.Practical examples with Python code will help you see how the math applies to the work you'll be doing, providing a clear understanding of how concepts work under the hood while connecting them to applications like machine learning. You'll get a solid foundation in the math essential for data science, but more importantly, you'll be able to use it to:Recognize the nuances and pitfalls of probability mathMaster statistics and hypothesis testing (and avoid common pitfalls)Discover practical applications of probability, statistics, calculus, and machine learningIntuitively understand linear algebra as a transformation of space, not just grids of numbers being multiplied and addedPerform calculus derivatives and integrals completely from scratch in PythonApply what you've learned to machine learning, including linear regression, logistic regression, and neural networks.
Published by O'Reilly Media
Seller: Academic Book Solutions, Medford, NY, U.S.A.
paperback. Condition: LikeNew. Used Like New, no missing pages, no damage to binding, may have a remainder mark.
Language: English
Published by O'Reilly Media, Sebastopol, 2022
ISBN 10: 1098102932 ISBN 13: 9781098102937
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condition: new. Paperback. To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus.Practical examples with Python code will help you see how the math applies to the work you'll be doing, providing a clear understanding of how concepts work under the hood while connecting them to applications like machine learning. You'll get a solid foundation in the math essential for data science, but more importantly, you'll be able to use it to:Recognize the nuances and pitfalls of probability mathMaster statistics and hypothesis testing (and avoid common pitfalls)Discover practical applications of probability, statistics, calculus, and machine learningIntuitively understand linear algebra as a transformation of space, not just grids of numbers being multiplied and addedPerform calculus derivatives and integrals completely from scratch in PythonApply what you've learned to machine learning, including linear regression, logistic regression, and neural networks To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Paperback. Condition: New. To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus.Practical examples with Python code will help you see how the math applies to the work you'll be doing, providing a clear understanding of how concepts work under the hood while connecting them to applications like machine learning. You'll get a solid foundation in the math essential for data science, but more importantly, you'll be able to use it to:Recognize the nuances and pitfalls of probability mathMaster statistics and hypothesis testing (and avoid common pitfalls)Discover practical applications of probability, statistics, calculus, and machine learningIntuitively understand linear algebra as a transformation of space, not just grids of numbers being multiplied and addedPerform calculus derivatives and integrals completely from scratch in PythonApply what you've learned to machine learning, including linear regression, logistic regression, and neural networks.
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New.
Condition: New. In.
Language: English
Published by O'Reilly Media 2022-06-10, 2022
ISBN 10: 1098102932 ISBN 13: 9781098102937
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New.
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New.
Condition: new.
Condition: New. 2022. Paperback. . . . . .
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition.
Condition: New. 1st edition NO-PA16APR2015-KAP.
Condition: New. 2022. Paperback. . . . . . Books ship from the US and Ireland.
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New.
Language: English
Published by Oreilly & Associates Inc, 2022
ISBN 10: 1098102932 ISBN 13: 9781098102937
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 350 pages. 9.19x7.00x0.73 inches. In Stock.
Language: English
Published by O'reilly Media Jun 2022, 2022
ISBN 10: 1098102932 ISBN 13: 9781098102937
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. Neuware -Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career. 333 pp. Englisch.
Language: English
Published by O'reilly Media Jun 2022, 2022
ISBN 10: 1098102932 ISBN 13: 9781098102937
Seller: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. Neuware -Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career. 333 pp. Englisch.