Seller: Rarewaves USA, OSWEGO, IL, U.S.A.
First Edition
Paperback. Condition: New. 1st. This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities (containers) partly filled by a liquid. The methods are normally based on the Bateman-Luke variational formalism combined with perturbation theory. The derived approximate equations of spatial motions of the body-liquid mechanical system (these equations are called mathematical models in the title) take the form of a finite-dimensional system of nonlinear ordinary differential equations coupling quasi-velocities of the rigid body motions and generalized coordinates responsible for displacements of the natural sloshing modes. Algorithms for computing the hydrodynamic coefficients in the approximate mathematical models are proposed. Numerical values of these coefficients are listed for some tank shapes and liquid fillings. The mathematical models are also derived for the contained liquid characterized by the Newton-type dissipation. Formulas for hydrodynamic force and moment are derived in terms of the solid body quasi-velocities and the sloshing-related generalized coordinates. For prescribed harmonic excitations of upright circular (annular) cylindrical and/or conical tanks, the steady-state sloshing regimes are theoretically classified; the results are compared with known experimental data. The book can be useful for both experienced and early-stage mechanicians, applied mathematicians and engineers interested in (semi-)analytical approaches to the "fluid-structure" interaction problems, their fundamental mathematical background as well as in modeling the dynamics of complex mechanical systems containing a rigid tank partly filled by a liquid.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
£ 26.62
Quantity: Over 20 available
Add to basketCondition: New. In.
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New.
Language: English
Published by De Gruyter, De Gruyter Jun 2017, 2017
ISBN 10: 3110555360 ISBN 13: 9783110555363
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities (containers) partly filled by a liquid. The methods are normally based on the Bateman-Luke variational formalism combined with perturbation theory. The derived approximate equations of spatial motions of the body-liquid mechanical system (these equations are called mathematical models in the title) take the form of a finite-dimensional system of nonlinear ordinary differential equations coupling quasi-velocities of the rigid body motions and generalized coordinates responsible for displacements of the natural sloshing modes. Algorithms for computing the hydrodynamic coefficients in the approximate mathematical models are proposed. Numerical values of these coefficients are listed for some tank shapes and liquid fillings. The mathematical models are also derived for the contained liquid characterized by the Newton-type dissipation. Formulas for hydrodynamic force and moment are derived in terms of the solid body quasi-velocities and the sloshing-related generalized coordinates. For prescribed harmonic excitations of upright circular (annular) cylindrical and/or conical tanks, the steady-state sloshing regimes are theoretically classified; the results are compared with known experimental data. The book can be useful for both experienced and early-stage mechanicians, applied mathematicians and engineers interested in (semi-)analytical approaches to the ¿fluid-structure¿ interaction problems, their fundamental mathematical background as well as in modeling the dynamics of complex mechanical systems containing a rigid tank partly filled by a liquid.Walter de Gruyter GmbH, Genthiner Strasse 13, 10785 Berlin 412 pp. Englisch.
Seller: Rarewaves USA United, OSWEGO, IL, U.S.A.
First Edition
Paperback. Condition: New. 1st. This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities (containers) partly filled by a liquid. The methods are normally based on the Bateman-Luke variational formalism combined with perturbation theory. The derived approximate equations of spatial motions of the body-liquid mechanical system (these equations are called mathematical models in the title) take the form of a finite-dimensional system of nonlinear ordinary differential equations coupling quasi-velocities of the rigid body motions and generalized coordinates responsible for displacements of the natural sloshing modes. Algorithms for computing the hydrodynamic coefficients in the approximate mathematical models are proposed. Numerical values of these coefficients are listed for some tank shapes and liquid fillings. The mathematical models are also derived for the contained liquid characterized by the Newton-type dissipation. Formulas for hydrodynamic force and moment are derived in terms of the solid body quasi-velocities and the sloshing-related generalized coordinates. For prescribed harmonic excitations of upright circular (annular) cylindrical and/or conical tanks, the steady-state sloshing regimes are theoretically classified; the results are compared with known experimental data. The book can be useful for both experienced and early-stage mechanicians, applied mathematicians and engineers interested in (semi-)analytical approaches to the "fluid-structure" interaction problems, their fundamental mathematical background as well as in modeling the dynamics of complex mechanical systems containing a rigid tank partly filled by a liquid.
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities (containers) partly filled by a liquid. The methods are normally based on the Bateman-Luke variational formalism combined with perturbation theory. The derived approximate equations of spatial motions of the body-liquid mechanical system (these equations are called mathematical models in the title) take the form of a finite-dimensional system of nonlinear ordinary differential equations coupling quasi-velocities of the rigid body motions and generalized coordinates responsible for displacements of the natural sloshing modes. Algorithms for computing the hydrodynamic coefficients in the approximate mathematical models are proposed. Numerical values of these coefficients are listed for some tank shapes and liquid fillings. The mathematical models are also derived for the contained liquid characterized by the Newton-type dissipation. Formulas for hydrodynamic force and moment are derived in terms of the solid body quasi-velocities and the sloshing-related generalized coordinates. For prescribed harmonic excitations of upright circular (annular) cylindrical and/or conical tanks, the steady-state sloshing regimes are theoretically classified; the results are compared with known experimental data. The book can be useful for both experienced and early-stage mechanicians, applied mathematicians and engineers interested in (semi-)analytical approaches to the 'fluid-structure' interaction problems, their fundamental mathematical background as well as in modeling the dynamics of complex mechanical systems containing a rigid tank partly filled by a liquid.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
£ 167.81
Quantity: Over 20 available
Add to basketCondition: New. In.
Condition: Sehr gut. Zustand: Sehr gut | Seiten: 410 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar.
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities (containers) partly filled by a liquid. The methods are normally based on the Bateman-Luke variational formalism combined with perturbation theory. The derived approximate equations of spatial motions of the body-liquid mechanical system (these equations are called mathematical models in the title) take the form of a finite-dimensional system of nonlinear ordinary differential equations coupling quasi-velocities of the rigid body motions and generalized coordinates responsible for displacements of the natural sloshing modes. Algorithms for computing the hydrodynamic coefficients in the approximate mathematical models are proposed. Numerical values of these coefficients are listed for some tank shapes and liquid fillings. The mathematical models are also derived for the contained liquid characterized by the Newton-type dissipation. Formulas for hydrodynamic force and moment are derived in terms of the solid body quasi-velocities and the sloshing-related generalized coordinates. For prescribed harmonic excitations of upright circular (annular) cylindrical and/or conical tanks, the steady-state sloshing regimes are theoretically classified; the results are compared with known experimental data. The book can be useful for both experienced and early-stage mechanicians, applied mathematicians and engineers interested in (semi-)analytical approaches to the 'fluid-structure' interaction problems, their fundamental mathematical background as well as in modeling the dynamics of complex mechanical systems containing a rigid tank partly filled by a liquid.
Seller: Rarewaves USA, OSWEGO, IL, U.S.A.
Hardback. Condition: New. This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities (containers) partly filled by a liquid. The methods are normally based on the Bateman-Luke variational formalism combined with perturbation theory. The derived approximate equations of spatial motions of the body-liquid mechanical system (these equations are called mathematical models in the title) take the form of a finite-dimensional system of nonlinear ordinary differential equations coupling quasi-velocities of the rigid body motions and generalized coordinates responsible for displacements of the natural sloshing modes. Algorithms for computing the hydrodynamic coefficients in the approximate mathematical models are proposed. Numerical values of these coefficients are listed for some tank shapes and liquid fillings. The mathematical models are also derived for the contained liquid characterized by the Newton-type dissipation. Formulas for hydrodynamic force and moment are derived in terms of the solid body quasi-velocities and the sloshing-related generalized coordinates. For prescribed harmonic excitations of upright circular (annular) cylindrical and/or conical tanks, the steady-state sloshing regimes are theoretically classified; the results are compared with known experimental data. The book can be useful for both experienced and early-stage mechanicians, applied mathematicians and engineers interested in (semi-)analytical approaches to the "fluid-structure" interaction problems, their fundamental mathematical background as well as in modeling the dynamics of complex mechanical systems containing a rigid tank partly filled by a liquid.
Seller: Rarewaves USA United, OSWEGO, IL, U.S.A.
Hardback. Condition: New. This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities (containers) partly filled by a liquid. The methods are normally based on the Bateman-Luke variational formalism combined with perturbation theory. The derived approximate equations of spatial motions of the body-liquid mechanical system (these equations are called mathematical models in the title) take the form of a finite-dimensional system of nonlinear ordinary differential equations coupling quasi-velocities of the rigid body motions and generalized coordinates responsible for displacements of the natural sloshing modes. Algorithms for computing the hydrodynamic coefficients in the approximate mathematical models are proposed. Numerical values of these coefficients are listed for some tank shapes and liquid fillings. The mathematical models are also derived for the contained liquid characterized by the Newton-type dissipation. Formulas for hydrodynamic force and moment are derived in terms of the solid body quasi-velocities and the sloshing-related generalized coordinates. For prescribed harmonic excitations of upright circular (annular) cylindrical and/or conical tanks, the steady-state sloshing regimes are theoretically classified; the results are compared with known experimental data. The book can be useful for both experienced and early-stage mechanicians, applied mathematicians and engineers interested in (semi-)analytical approaches to the "fluid-structure" interaction problems, their fundamental mathematical background as well as in modeling the dynamics of complex mechanical systems containing a rigid tank partly filled by a liquid.
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
£ 26.98
Quantity: Over 20 available
Add to basketPAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Published by Kyiv, 1975
Seller: BiblioEra, Everett, MA, U.S.A.
Hardcover. Condition: Good. In Russian. Lukovsky, Ivan Alexandrovich. Non-linear fluid oscillations in vessels of complex geometric shape. Kyiv: Science Thought, 1975. All images are for identification of editions only. Several books of the same edition may be available. Please feel free to request photos of available books.SKU6941104.
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities (containers) partly filled by a liquid. The methods are normally based on the Bateman-Luke variational formalism combined with perturbation theory. The derived approximate equations of spatial motions of the body-liquid mechanical system (these equations are called mathematical models in the title) take the form of a finite-dimensional system of nonlinear ordinary differential equations coupling quasi-velocities of the rigid body motions and generalized coordinates responsible for displacements of the natural sloshing modes. Algorithms for computing the hydrodynamic coefficients in the approximate mathematical models are proposed. Numerical values of these coefficients are listed for some tank shapes and liquid fillings. The mathematical models are also derived for the contained liquid characterized by the Newton-type dissipation. Formulas for hydrodynamic force and moment are derived in terms of the solid body quasi-velocities and the sloshing-related generalized coordinates. For prescribed harmonic excitations of upright circular (annular) cylindrical and/or conical tanks, the steady-state sloshing regimes are theoretically classified; the results are compared with known experimental data. The book can be useful for both experienced and early-stage mechanicians, applied mathematicians and engineers interested in (semi-)analytical approaches to the 'fluid-structure' interaction problems, their fundamental mathematical background as well as in modeling the dynamics of complex mechanical systems containing a rigid tank partly filled by a liquid. 412 pp. Englisch.
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Ivan A. Lukovsky, Nat.
Taschenbuch. Condition: Neu. Nonlinear Dynamics | Mathematical Models for Rigid Bodies with a Liquid | Ivan A. Lukovsky | Taschenbuch | PrefaceIntroduction1. G | Englisch | 2017 | De Gruyter | EAN 9783110555363 | Verantwortliche Person für die EU: De Gruyter [9], Genthiner Str. 13, 10785 Berlin, orders[at]degruyter[dot]com | Anbieter: preigu Print on Demand.
Language: English
Published by De Gruyter, De Gruyter Apr 2015, 2015
ISBN 10: 3110316552 ISBN 13: 9783110316551
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities (containers) partly filled by a liquid. The methods are normally based on the Bateman-Luke variational formalism combined with perturbation theory. The derived approximate equations of spatial motions of the body-liquid mechanical system (these equations are called mathematical models in the title) take the form of a finite-dimensional system of nonlinear ordinary differential equations coupling quasi-velocities of the rigid body motions and generalized coordinates responsible for displacements of the natural sloshing modes. Algorithms for computing the hydrodynamic coefficients in the approximate mathematical models are proposed. Numerical values of these coefficients are listed for some tank shapes and liquid fillings. The mathematical models are also derived for the contained liquid characterized by the Newton-type dissipation. Formulas for hydrodynamic force and moment are derived in terms of the solid body quasi-velocities and the sloshing-related generalized coordinates. For prescribed harmonic excitations of upright circular (annular) cylindrical and/or conical tanks, the steady-state sloshing regimes are theoretically classified; the results are compared with known experimental data. The book can be useful for both experienced and early-stage mechanicians, applied mathematicians and engineers interested in (semi-)analytical approaches to the 'fluid-structure' interaction problems, their fundamental mathematical background as well as in modeling the dynamics of complex mechanical systems containing a rigid tank partly filled by a liquid. 410 pp. Englisch.
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Ivan A. Lukovsky, Nat.
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
£ 174.53
Quantity: Over 20 available
Add to basketHRD. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
HRD. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Buch. Condition: Neu. Nonlinear Dynamics | Mathematical Models for Rigid Bodies with a Liquid | Ivan A. Lukovsky | Buch | XVI | Englisch | 2015 | De Gruyter | EAN 9783110316551 | Verantwortliche Person für die EU: Walter de Gruyter GmbH, De Gruyter GmbH, Genthiner Str. 13, 10785 Berlin, productsafety[at]degruyterbrill[dot]com | Anbieter: preigu Print on Demand.
Language: English
Published by De Gruyter, De Gruyter Apr 2015, 2015
ISBN 10: 3110316552 ISBN 13: 9783110316551
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities (containers) partly filled by a liquid. The methods are normally based on the Bateman-Luke variational formalism combined with perturbation theory. The derived approximate equations of spatial motions of the body-liquid mechanical system (these equations are called mathematical models in the title) take the form of a finite-dimensional system of nonlinear ordinary differential equations coupling quasi-velocities of the rigid body motions and generalized coordinates responsible for displacements of the natural sloshing modes. Algorithms for computing the hydrodynamic coefficients in the approximate mathematical models are proposed. Numerical values of these coefficients are listed for some tank shapes and liquid fillings. The mathematical models are also derived for the contained liquid characterized by the Newton-type dissipation. Formulas for hydrodynamic force and moment are derived in terms of the solid body quasi-velocities and the sloshing-related generalized coordinates. For prescribed harmonic excitations of upright circular (annular) cylindrical and/or conical tanks, the steady-state sloshing regimes are theoretically classified; the results are compared with known experimental data.The book can be useful for both experienced and early-stage mechanicians, applied mathematicians and engineers interested in (semi-)analytical approaches to the fluid-structure interaction problems, their fundamental mathematical background as well as in modeling the dynamics of complex mechanical systems containing a rigid tank partly filled by a liquid.Walter de Gruyter GmbH, Genthiner Strasse 13, 10785 Berlin 410 pp. Englisch.