Hardcover. Condition: Good. Hardcover, xv + 305 pages, NOT ex-library. Front blank endpaper stuck to the front board; neatly removed title page. Book is clean and bright with unmarked text, free of inscriptions and stamps, firmly bound. Issued without a dust jacket. -- Contents: 1 An Introduction to Autonomous Search [What Is an Autonomous Solver? (Architecture & Configuration of the Solver); Outline and Overview of the Book; Guideline for Readers]; Part I Off-line Configuration 2 Evolutionary Algorithm Parameters and Methods to Tune Them [Background and Objectives; Evolutionary Algorithms, Parameters, Algorithm Instances; Algorithm Design and Parameter Tuning; Utility, Algorithm Performance, Test Functions; Algorithmic Approaches to Parameter Tuning; Successful Case Studies on Tuning Evolutionary Algorithms; Considerations for Tuning EAs; Conclusions and Outlook] 3 Automated Algorithm Configuration and Parameter lining [Racing Procedures ; ParamlLS; Sequential Model-Based Optimisation; Other Approaches; Conclusions and Future Work] 4 Case-Based Reasoning for Autonomous Constraint Solving [Case-Based Reasoning; Case-Based Reasoning and Search; CPHYDRA: A Case-Based Portfolio Constraint Solver; Concluding Remarks] 5 Learning a Mixture of Search Heuristics [Machine Learning and Mixtures of Experts; Constraint Satisfaction and Heuristic Search; Search with More than One Heuristic; ACE; Techniques that Improve Learning; Results; Conclusions and Future Work]; Part II On-line Control 6 An Investigation of Reinforcement Learning for Reactive Search Optimization [Reinforcement Learning for Optimization; Reinforcement Learning and Dynamic Programming Basics; Reactive SAT/MAX-SAT Solvers; RL-Based Approach for Reactive SAT/MAX-SAT Solvers; Experimental Results] 7 Adaptive Operator Selection and Management in Evolutionary Algorithms [Parameter Setting in Evolutionary Algorithms; Adaptive Operator Selection; Adaptive Operator Management] 8 Parameter Adaptation in Ant Colony Optimization [Ant Colony Optimization; Overview of Parameter Adaptation Approaches; Parameter Adaptation in ACO; Experimental Investigation of Fixed Parameter Settings; Prescheduled Parameter Variation for MMAS]; Part III New Directions and Applications 9 Continuous Search in Constraint Programming [Background and Notations; Continuous Search in Constraint Programming; Dynamic Continuous Search; Experimental Validation; Related Works; Discussion and Perspectives] 10 Control-Based Clause Sharing in Parallel SAT Solving [Introduction; Previous Works; Technical Background; Control-Based Clause Sharing in Parallel SAT Solving; Evaluation; Conclusion] 11 Learning Feature-Based Heuristic Functions [Introduction; Search Framework; Learning Heuristic Functions; Feature Combination as a Linear Program; Approximation Bounds; Empirical Results; Conclusion; References].
Condition: New.
Condition: New.
Condition: New.
£ 94.30
Quantity: Over 20 available
Add to basketCondition: New. In.
£ 94.60
Quantity: Over 20 available
Add to basketCondition: New. In English.
Paperback. Condition: Brand New. 2012 edition. 316 pages. 9.20x6.10x0.80 inches. In Stock.
Language: English
Published by Springer-Verlag New York Inc, 2012
ISBN 10: 3642214339 ISBN 13: 9783642214332
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 2012 edition. 324 pages. 9.00x6.00x0.75 inches. In Stock.
Language: English
Published by Springer Berlin Heidelberg, 2014
ISBN 10: 3642443346 ISBN 13: 9783642443343
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Decades of innovations in combinatorial problem solving have produced better and more complex algorithms. These new methods are better since they can solve larger problems and address new application domains. They are also more complex which means that they are hard to reproduce and often harder to fine-tune to the peculiarities of a given problem. This last point has created a paradox where efficient tools are out of reach of practitioners.Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search 'crosses the chasm' and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search 'crosses the chasm' and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.
Language: English
Published by Springer Berlin Heidelberg, 2012
ISBN 10: 3642214339 ISBN 13: 9783642214332
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Decades of innovations in combinatorial problem solving have produced better and more complex algorithms. These new methods are better since they can solve larger problems and address new application domains. They are also more complex which means that they are hard to reproduce and often harder to fine-tune to the peculiarities of a given problem. This last point has created a paradox where efficient tools are out of reach of practitioners.Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search 'crosses the chasm' and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search 'crosses the chasm' and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.
Language: English
Published by Springer Berlin Heidelberg, Springer Berlin Heidelberg Jan 2012, 2012
ISBN 10: 3642214339 ISBN 13: 9783642214332
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -Decades of innovations in combinatorial problem solving have produced better and more complex algorithms. These new methods are better since they can solve larger problems and address new application domains. They are also more complex which means that they are hard to reproduce and often harder to fine-tune to the peculiarities of a given problem. This last point has created a paradox where efficient tools are out of reach of practitioners.Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search 'crosses the chasm' and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search 'crosses the chasm' and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solvinSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 324 pp. Englisch.
Language: English
Published by Springer Berlin Heidelberg, 2012
ISBN 10: 3642214339 ISBN 13: 9783642214332
Seller: Buchpark, Trebbin, Germany
Condition: Sehr gut. Zustand: Sehr gut | Seiten: 324 | Sprache: Englisch | Produktart: Bücher | Autonomous combinatorial search (AS) represents a new field in combinatorial problem solving. Its major standpoint and originality is that it considers that problem solvers must be capable of self-improvement operations. This is the first book dedicated to AS.
Hardcover. Condition: Like New. Like New. book.
Paperback. Condition: Like New. Like New. book.
Seller: Brook Bookstore On Demand, Napoli, NA, Italy
Condition: new. Questo è un articolo print on demand.
Seller: Brook Bookstore On Demand, Napoli, NA, Italy
Condition: new. Questo è un articolo print on demand.
Language: English
Published by Springer Berlin Heidelberg Feb 2014, 2014
ISBN 10: 3642443346 ISBN 13: 9783642443343
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Decades of innovations in combinatorial problem solving have produced better and more complex algorithms. These new methods are better since they can solve larger problems and address new application domains. They are also more complex which means that they are hard to reproduce and often harder to fine-tune to the peculiarities of a given problem. This last point has created a paradox where efficient tools are out of reach of practitioners.Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search 'crosses the chasm' and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search 'crosses the chasm' and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms. 324 pp. Englisch.
Language: English
Published by Springer Berlin Heidelberg Jan 2012, 2012
ISBN 10: 3642214339 ISBN 13: 9783642214332
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Decades of innovations in combinatorial problem solving have produced better and more complex algorithms. These new methods are better since they can solve larger problems and address new application domains. They are also more complex which means that they are hard to reproduce and often harder to fine-tune to the peculiarities of a given problem. This last point has created a paradox where efficient tools are out of reach of practitioners.Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search 'crosses the chasm' and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search 'crosses the chasm' and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms. 324 pp. Englisch.
Language: English
Published by Springer Berlin Heidelberg, 2014
ISBN 10: 3642443346 ISBN 13: 9783642443343
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The contributors are among the leading researchers in the areas of heuristics, optimization, evolutionary computing and constraintsThe book will be of benefit to researchers, engineers and postgraduates in the areas of constraint programming, m.
Language: English
Published by Springer Berlin Heidelberg, 2012
ISBN 10: 3642214339 ISBN 13: 9783642214332
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The contributors are among the leading researchers in the areas of heuristics, optimization, evolutionary computing and constraintsThe book will be of benefit to researchers, engineers and postgraduates in the areas of constraint programming, m.
Language: English
Published by Springer-Verlag GmbH, 2012
ISBN 10: 3642214339 ISBN 13: 9783642214332
Seller: preigu, Osnabrück, Germany
Buch. Condition: Neu. Autonomous Search | Youssef Hamadi (u. a.) | Buch | xvi | Englisch | 2012 | Springer-Verlag GmbH | EAN 9783642214332 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Language: English
Published by Springer Berlin Heidelberg, Springer Berlin Heidelberg Feb 2014, 2014
ISBN 10: 3642443346 ISBN 13: 9783642443343
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Decades of innovations in combinatorial problem solving have produced better and more complex algorithms. These new methods are better since they can solve larger problems and address new application domains. They are also more complex which means that they are hard to reproduce and often harder to fine-tune to the peculiarities of a given problem. This last point has created a paradox where efficient tools are out of reach of practitioners.Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search 'crosses the chasm' and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search 'crosses the chasm' and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solvinSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 324 pp. Englisch.