From
Majestic Books, Hounslow, United Kingdom
Seller rating 4 out of 5 stars
AbeBooks Seller since 19 January 2007
Seller Inventory # 401483693
Deep neural networks (DNNs) with their dense and complex algorithms provide real possibilities for Artificial General Intelligence (AGI). Meta-learning with DNNs brings AGI much closer: artificial agents solving intelligent tasks that human beings can achieve, even transcending what they can achieve. Meta-Learning: Theory, Algorithms and Applications shows how meta-learning in combination with DNNs advances towards AGI.
Meta-Learning: Theory, Algorithms and Applications explains the fundamentals of meta-learning by providing answers to these questions: What is meta-learning?; why do we need meta-learning?; how are self-improved meta-learning mechanisms heading for AGI ?; how can we use meta-learning in our approach to specific scenarios? The book presents the background of seven mainstream paradigms: meta-learning, few-shot learning, deep learning, transfer learning, machine learning, probabilistic modeling, and Bayesian inference. It then explains important state-of-the-art mechanisms and their variants for meta-learning, including memory-augmented neural networks, meta-networks, convolutional Siamese neural networks, matching networks, prototypical networks, relation networks, LSTM meta-learning, model-agnostic meta-learning, and the Reptile algorithm.
The book takes a deep dive into nearly 200 state-of-the-art meta-learning algorithms from top tier conferences (e.g. NeurIPS, ICML, CVPR, ACL, ICLR, KDD). It systematically investigates 39 categories of tasks from 11 real-world application fields: Computer Vision, Natural Language Processing, Meta-Reinforcement Learning, Healthcare, Finance and Economy, Construction Materials, Graphic Neural Networks, Program Synthesis, Smart City, Recommended Systems, and Climate Science. Each application field concludes by looking at future trends or by giving a summary of available resources.
Meta-Learning: Theory, Algorithms and Applications is a great resource to understand the principles of meta-learning and to learn state-of-the-art meta-learning algorithms, giving the student, researcher and industry professional the ability to apply meta-learning for various novel applications.
About the Author: Lan Zou is a researcher in the field of artificial intelligence (AI) at Silicon Valley and Carnegie Mellon University. She holds a master’s degree from Carnegie Mellon University, School of Computer Science, and she earned a dual degree in mathematics and statistics from the University of Washington. She has worked at the United Nations and at the investment bank UBS. Lan Zou is currently serving as an columnist at AIHub.org, the association to connect the AI community to the public by providing information about high-quality AI books and publications by the Association for the Advancement of Artificial Intelligence (AAAI), the International Conference on Machine Learning (ICML), and the Conference and Workshop on Neural Information Processing Systems (NeurIPS).
Title: Meta-Learning : Theory, Algorithms and ...
Publisher: Academic Press
Publication Date: 2022
Binding: Soft cover
Condition: New
Seller: Brook Bookstore On Demand, Napoli, NA, Italy
Condition: new. Questo è un articolo print on demand. Seller Inventory # aea87be4fdb1c1ca8e596fb2c40aa37c
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 225 pages. 9.25x7.50x0.83 inches. In Stock. This item is printed on demand. Seller Inventory # __0323899315
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 44580666-n
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. Seller Inventory # 18395942008
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 44580666
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 44580666
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Kartoniert / Broschiert. Condition: New. Über den AutorLan Zou is a researcher in the field of artificial intelligence (AI) at Silicon Valley and Carnegie Mellon University. She holds a master s degree from Carnegie Mellon University, School of Computer Science, and she ea. Seller Inventory # 571461037
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 44580666-n
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 222. Seller Inventory # C9780323899314
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Neuware - Deep neural networks (DNNs) with their dense and complex algorithms provide real possibilities for Artificial General Intelligence (AGI). Meta-learning with DNNs brings AGI much closer: artificial agents solving intelligent tasks that human beings can achieve, even transcending what they can achieve. Meta-Learning: Theory, Algorithms and Applications shows how meta-learning in combination with DNNs advances towards AGI. Meta-Learning: Theory, Algorithms and Applications explains the fundamentals of meta-learning by providing answers to these questions: What is meta-learning ; why do we need meta-learning ; how are self-improved meta-learning mechanisms heading for AGI ; how can we use meta-learning in our approach to specific scenarios The book presents the background of seven mainstream paradigms: meta-learning, few-shot learning, deep learning, transfer learning, machine learning, probabilistic modeling, and Bayesian inference. It then explains important state-of-the-art mechanisms and their variants for meta-learning, including memory-augmented neural networks, meta-networks, convolutional Siamese neural networks, matching networks, prototypical networks, relation networks, LSTM meta-learning, model-agnostic meta-learning, and the Reptile algorithm. The book takes a deep dive into nearly 200 state-of-the-art meta-learning algorithms from top tier conferences (e.g. NeurIPS, ICML, CVPR, ACL, ICLR, KDD). It systematically investigates 39 categories of tasks from 11 real-world application fields: Computer Vision, Natural Language Processing, Meta-Reinforcement Learning, Healthcare, Finance and Economy, Construction Materials, Graphic Neural Networks, Program Synthesis, Smart City, Recommended Systems, and Climate Science. Each application field concludes by looking at future trends or by giving a summary of available resources. Meta-Learning: Theory, Algorithms and Applications is a great resource to understand the principles of meta-learning and to learn state-of-the-art meta-learning algorithms, giving the student, researcher and industry professional the ability to apply meta-learning for various novel applications. Seller Inventory # 9780323899314