The investigation of many mathematical problems is significantly simplified if it is possible to reduce them to equations involving continuous or com pletely continuous operators in function spaces. In particular, this is true for non-linear boundary value problems and for integro-differential and integral equations. To effect a transformation to equations with continuous or completely continuous operators, it is usually necessary to reduce the original problem to one involving integral equations. Here, negative and fractional powers of those unbounded differential operators which constitute 'principal parts' of the original problem, are used in an essential way. Next there is chosen or constructed a function space in which the corresponding integral oper ator possesses sufficiently good properties. Once such a space is found, the original problem can often be analyzed by applying general theorems (Fredholm theorems in the study of linear equations, fixed point principles in the study of non-linear equations, methods of the theory of cones in the study of positive solutions, etc.). In other words, the investigation of many problems is effectively divided into three independent parts: transformation to an integral equation, investi gation of the corresponding integral expression as an operator acting in function spaces, and, finally, application of general methods of functional analysis to the investigation of the linear and non-linear equations.
"synopsis" may belong to another edition of this title.
Seller: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condition: New. Integral Operators in Spaces of Summable Functions. Book. Seller Inventory # BBS-9789401015448
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0412070053598
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9789401015448_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The investigation of many mathematical problems is significantly simplified if it is possible to reduce them to equations involving continuous or com pletely continuous operators in function spaces. In particular, this is true for non-linear boundary value problems and for integro-differential and integral equations. To effect a transformation to equations with continuous or completely continuous operators, it is usually necessary to reduce the original problem to one involving integral equations. Here, negative and fractional powers of those unbounded differential operators which constitute 'principal parts' of the original problem, are used in an essential way. Next there is chosen or constructed a function space in which the corresponding integral oper ator possesses sufficiently good properties. Once such a space is found, the original problem can often be analyzed by applying general theorems (Fredholm theorems in the study of linear equations, fixed point principles in the study of non-linear equations, methods of the theory of cones in the study of positive solutions, etc.). In other words, the investigation of many problems is effectively divided into three independent parts: transformation to an integral equation, investi gation of the corresponding integral expression as an operator acting in function spaces, and, finally, application of general methods of functional analysis to the investigation of the linear and non-linear equations. 540 pp. Englisch. Seller Inventory # 9789401015448
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 540 pages. 8.82x5.91x1.26 inches. In Stock. Seller Inventory # x-9401015449
Seller: moluna, Greven, Germany
Condition: New. Seller Inventory # 5830056
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The investigation of many mathematical problems is significantly simplified if it is possible to reduce them to equations involving continuous or com pletely continuous operators in function spaces. In particular, this is true for non-linear boundary value problems and for integro-differential and integral equations. To effect a transformation to equations with continuous or completely continuous operators, it is usually necessary to reduce the original problem to one involving integral equations. Here, negative and fractional powers of those unbounded differential operators which constitute 'principal parts' of the original problem, are used in an essential way. Next there is chosen or constructed a function space in which the corresponding integral oper ator possesses sufficiently good properties. Once such a space is found, the original problem can often be analyzed by applying general theorems (Fredholm theorems in the study of linear equations, fixed point principles in the study of non-linear equations, methods of the theory of cones in the study of positive solutions, etc.). In other words, the investigation of many problems is effectively divided into three independent parts: transformation to an integral equation, investi gation of the corresponding integral expression as an operator acting in function spaces, and, finally, application of general methods of functional analysis to the investigation of the linear and non-linear equations.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 540 pp. Englisch. Seller Inventory # 9789401015448
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Integral operators in spaces of summable functions | M. A. Krasnosel'skii (u. a.) | Taschenbuch | 536 S. | Englisch | 2011 | Springer | EAN 9789401015448 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Seller Inventory # 105625568
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - The investigation of many mathematical problems is significantly simplified if it is possible to reduce them to equations involving continuous or com pletely continuous operators in function spaces. In particular, this is true for non-linear boundary value problems and for integro-differential and integral equations. To effect a transformation to equations with continuous or completely continuous operators, it is usually necessary to reduce the original problem to one involving integral equations. Here, negative and fractional powers of those unbounded differential operators which constitute 'principal parts' of the original problem, are used in an essential way. Next there is chosen or constructed a function space in which the corresponding integral oper ator possesses sufficiently good properties. Once such a space is found, the original problem can often be analyzed by applying general theorems (Fredholm theorems in the study of linear equations, fixed point principles in the study of non-linear equations, methods of the theory of cones in the study of positive solutions, etc.). In other words, the investigation of many problems is effectively divided into three independent parts: transformation to an integral equation, investi gation of the corresponding integral expression as an operator acting in function spaces, and, finally, application of general methods of functional analysis to the investigation of the linear and non-linear equations. Seller Inventory # 9789401015448