I Rank One Groups.- § 1 Definition, examples, basic properties.- § 2 On the structure of rank one groups.- § 3 Quadratic modules.- § 4 Rank one groups and buildings.- § 5 Structure and embeddings of special rank one groups.- II Abstract Root Subgroups.- § 1 Definitions and examples.- § 2 Basic properties of groups generated by abstract root subgroups.- § 3 Triangle groups.- §4 The radical R(G).- § 5 Abstract root subgroups and Lie type groups.- III Classification Theory.- § 1 Abstract transvection groups.- § 2 The action of G on ?.- § 3 The linear groups and EK6.- § 4 Moufang hexagons.- § 5 The orthogonal groups.- §6 D4(k).- § 7 Metasymplectic spaces.- §8 E6(k),E7(k) and E8(k).- § 9 The classification theorems.- IV Root involutions.- § 1 General properties of groups generated by root involutions.- § 2 Root subgroups.- § 3 The Root Structure Theorem.- § 4 The Rank Two Case.- V Applications.- § 1 Quadratic pairs.- § 2 Subgroups generated by root elements.- §3 Local BN-pairs.- References.- Symbol Index.
"synopsis" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want