It was already in 1964 [Fis66] when B. Fischer raised the question: Which finite groups can be generated by a conjugacy class D of involutions, the product of any two of which has order 1, 2 or 37 Such a class D he called a class of 3-tmnspositions of G. This question is quite natural, since the class of transpositions of a symmetric group possesses this property. Namely the order of the product (ij)(kl) is 1, 2 or 3 according as {i,j} n {k,l} consists of 2,0 or 1 element. In fact, if I{i,j} n {k,I}1 = 1 and j = k, then (ij)(kl) is the 3-cycle (ijl). After the preliminary papers [Fis66] and [Fis64] he succeeded in [Fis71J, [Fis69] to classify all finite "nearly" simple groups generated by such a class of 3-transpositions, thereby discovering three new finite simple groups called M(22), M(23) and M(24). But even more important than his classification theorem was the fact that he originated a new method in the study of finite groups, which is called "internal geometric analysis" by D. Gorenstein in his book: Finite Simple Groups, an Introduction to their Classification. In fact D. Gorenstein writes that this method can be regarded as second in importance for the classification of finite simple groups only to the local group-theoretic analysis created by J. Thompson.
"synopsis" may belong to another edition of this title.
"The book is well written: the style is concise but not hard and most of the book is not too difficult to read for a graduate student. Some parts of it are certainly suited for a class."
--Mathematical Reviews
The present book is the first to systematically treat the theory of groups generated by a conjugacy class of subgroups, satisfying certain generational properties on pairs of subgroups. For finite groups, this theory has been developed in the 1970s mainly by M. Aschbacher, B. Fischer and the author. It was extended to arbitrary groups in the 1990s by the author. The theory of abstract root subgroups is an important tool to study and classify simple classical and Lie-type groups. It is strongly related to the theory of root groups on buildings developed by J. Tits, which in turn extends the theory of root subgroups of Chevalley groups. The book is of interest to mathematicians working in different areas such as finite group theory, classical groups, algebraic and Lie-type groups, buildings and generalized polygons. It will also be welcomed by the graduate student in any of the above subjects, as well as the researcher working in any of these areas. Parts of it can also be used for graduate classes. Large parts of the book are self-contained and accessible with reasonable knowledge in abstract group theory and classical groups.
Its main purpose is to give complete and partially new proofs of results that are quite unaccessible in the literature."About this title" may belong to another edition of this title.
£ 15.42 shipping from Germany to United Kingdom
Destination, rates & speedsFREE shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Antiquariat Bookfarm, Löbnitz, Germany
Hardcover. XIII, 389 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. R-16498 9783764365325 Sprache: Englisch Gewicht in Gramm: 1050. Seller Inventory # 2479905
Quantity: 1 available
Seller: Bingo Used Books, Vancouver, WA, U.S.A.
Hardcover. Condition: Near Fine. Dust Jacket Condition: Near Fine. Hardback in near fine condition with near fine condition dust jacket. Seller Inventory # 152049
Quantity: 1 available
Seller: ANTIQUARIAT Franke BRUDDENBOOKS, Lübeck, Germany
Gebundene Ausgabe, Gr.-8°. Condition: Sehr gut. 2001. 402 S. Das Buch ist in sehr gutem, sauberen Zustand. Gebundenes Buch mit Original-Schutzumschlag. Dieser mit minimalen. Randläsuren. -----Inhalt:. It was already in 1964 [Fis66] when B. Fischer raised the question: Which finite groups can be generated by a conjugacy class D of involutions, the product of any two of which has order 1, 2 or 37 Such a class D he called a class of 3-tmnspositions of G. This question is quite natural, since the class of transpositions of a symmetric group possesses this property. Namely the order of the product (ij)(kl) is 1, 2 or 3 according as {i,j} n {k,l} consists of 2,0 or 1 element. In fact, if I{i,j} n {k,I}1 = 1 and j = k, then (ij)(kl) is the 3-cycle (ijl). After the preliminary papers [Fis66] and [Fis64] he succeeded in [Fis71J, [Fis69] to classify all finite "nearly" simple groups generated by such a class of 3-transpositions, thereby discovering three new finite simple groups called M(22), M(23) and M(24). But even more important than his classification theorem was the fact that he originated a new method in the study of finite groups, which is called "internal geometric analysis" by D. Gorenstein in his book: Finite Simple Groups, an Introduction to their Classification. In fact D. Gorenstein writes that this method can be regarded as second in importance for the classification of finite simple groups only to the local group-theoretic analysis created by J. Thompson. I Rank One Groups.- 1 Definition, examples, basic properties.- 2 On the structure of rank one groups.- 3 Quadratic modules.- 4 Rank one groups and buildings.- 5 Structure and embeddings of special rank one groups.- II Abstract Root Subgroups.- 1 Definitions and examples.- 2 Basic properties of groups generated by abstract root subgroups.- 3 Triangle groups.- 4 The radical R(G).- 5 Abstract root subgroups and Lie type groups.- III Classification Theory.- 1 Abstract transvection groups.- 2 The action of G on ?.- 3 The linear groups and EK6.- 4 Moufang hexagons.- 5 The orthogonal groups.- 6 D4(k).- 7 Metasymplectic spaces.- 8 E6(k),E7(k) and E8(k).- 9 The classification theorems.- IV Root involutions.- 1 General properties of groups generated by root involutions.- 2 Root subgroups.- 3 The Root Structure Theorem.- 4 The Rank Two Case.- V Applications.- 1 Quadratic pairs.- 2 Subgroups generated by root elements.- 3 Local BN-pairs.- References.- Symbol Index. ISBN: 9783764365325 Wir senden umgehend mit beiliegender MwSt.Rechnung. Sprache: Englisch Gewicht in Gramm: 1043. Seller Inventory # 669031
Quantity: 1 available
Seller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condition: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Seller Inventory # ABNR-81901
Quantity: 1 available
Seller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-273246
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783764365325_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book systematically treats the theory of groups generated by a conjugacy class of subgroups, satisfying certain generational properties on pairs of subgroups. For finite groups, this theory has been developed in the 1970s mainly by M. Aschbacher, B. Seller Inventory # 5279435
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -It was already in 1964 [Fis66] when B. Fischer raised the question: Which finite groups can be generated by a conjugacy class D of involutions, the product of any two of which has order 1, 2 or 37 Such a class D he called a class of 3-tmnspositions of G. This question is quite natural, since the class of transpositions of a symmetric group possesses this property. Namely the order of the product (ij)(kl) is 1, 2 or 3 according as {i,j} n {k,l} consists of 2,0 or 1 element. In fact, if I{i,j} n {k,I}1 = 1 and j = k, then (ij)(kl) is the 3-cycle (ijl). After the preliminary papers [Fis66] and [Fis64] he succeeded in [Fis71J, [Fis69] to classify all finite 'nearly' simple groups generated by such a class of 3-transpositions, thereby discovering three new finite simple groups called M(22), M(23) and M(24). But even more important than his classification theorem was the fact that he originated a new method in the study of finite groups, which is called 'internal geometric analysis' by D. Gorenstein in his book: Finite Simple Groups, an Introduction to their Classification. In fact D. Gorenstein writes that this method can be regarded as second in importance for the classification of finite simple groups only to the local group-theoretic analysis created by J. Thompson. 389 pp. Englisch. Seller Inventory # 9783764365325
Quantity: 2 available
Seller: Mooney's bookstore, Den Helder, Netherlands
Condition: Very good. Seller Inventory # 9783764365325-2-2
Quantity: 1 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - It was already in 1964 [Fis66] when B. Fischer raised the question: Which finite groups can be generated by a conjugacy class D of involutions, the product of any two of which has order 1, 2 or 37 Such a class D he called a class of 3-tmnspositions of G. This question is quite natural, since the class of transpositions of a symmetric group possesses this property. Namely the order of the product (ij)(kl) is 1, 2 or 3 according as {i,j} n {k,l} consists of 2,0 or 1 element. In fact, if I{i,j} n {k,I}1 = 1 and j = k, then (ij)(kl) is the 3-cycle (ijl). After the preliminary papers [Fis66] and [Fis64] he succeeded in [Fis71J, [Fis69] to classify all finite 'nearly' simple groups generated by such a class of 3-transpositions, thereby discovering three new finite simple groups called M(22), M(23) and M(24). But even more important than his classification theorem was the fact that he originated a new method in the study of finite groups, which is called 'internal geometric analysis' by D. Gorenstein in his book: Finite Simple Groups, an Introduction to their Classification. In fact D. Gorenstein writes that this method can be regarded as second in importance for the classification of finite simple groups only to the local group-theoretic analysis created by J. Thompson. Seller Inventory # 9783764365325
Quantity: 1 available