The transfer of hereditary information from genes to proteins is one of the essential pr- esses in all living organisms on our planet. Some genes are expressed without modu- tion throughout the life of a cell, while many others require various degrees of control to precisely balance cellular metabolism with environmental conditions. For many years, researchers attributed this regulatory function to protein molecules, which can direct gene expression at multiple levels, in response to various input signals, and with different degrees of selectivity. Even when the control of gene expression was achieved via direct interactions between proteins and mRNAs, the active role was routinely assigned to p- teins, while RNAs were considered merely as recipient molecules. The discovery of RNA interference and multiple bacterial regulatory RNAs caused a shift from the perception of proteins as the predominant regulators of gene expression to the acknowledgement of the importance of RNAs in many regulatory circuits. Such a viewpoint received strong support several years ago after the discovery of riboswitches and related RNA sensors – mRNA regions capable of alternating their conformations in response to the presence of cellular metabolites and other physical or chemical cues. These classes of RNA pass on cellular and environmental information directly to transcription or translation machinery without the assistance of proteins. The riboswitches are commonly defined as evolutionarily conserved mRNA regions capable of specific binding to metabolite molecules, and, as a result, adopting a particular RNA conformation that modulates gene expression.
"synopsis" may belong to another edition of this title.
The revolutionary discoveries of RNA interference and bacterial regulatory RNAs led to further breakthroughs such as the identification of riboswitches and related RNA sensors, mRNA regions capable of alternating their conformations in response to the presence of cellular metabolites and other physical or chemical cues. In Riboswitches: Methods and Protocols, expert researchers provide comprehensive and up-to-date coverage of various methods used to study riboswitches and other RNAs involved in gene expression control. Examining biochemical and modern biophysical techniques, the volume focuses on mRNAs responding to small organic molecules but expands the definition of a riboswitch to incorporate classes of RNA that undergo conformational transitions in response to other stimuli in order to control the expression of genes. Written in the highly successful Methods in Molecular Biology™ series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls.
Cutting-edge and authoritative, Riboswitches: Methods and Protocols promises to inspire both novices and experts working in a wide range of contemporary biological areas who wish to further develop their RNA methodology.
"About this title" may belong to another edition of this title.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781617379475_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The transfer of hereditary information from genes to proteins is one of the essential pr- esses in all living organisms on our planet. Some genes are expressed without modu- tion throughout the life of a cell, while many others require various degrees of control to precisely balance cellular metabolism with environmental conditions. For many years, researchers attributed this regulatory function to protein molecules, which can direct gene expression at multiple levels, in response to various input signals, and with different degrees of selectivity. Even when the control of gene expression was achieved via direct interactions between proteins and mRNAs, the active role was routinely assigned to p- teins, while RNAs were considered merely as recipient molecules. The discovery of RNA interference and multiple bacterial regulatory RNAs caused a shift from the perception of proteins as the predominant regulators of gene expression to the acknowledgement of the importance of RNAs in many regulatory circuits. Such a viewpoint received strong support several years ago after the discovery of riboswitches and related RNA sensors - mRNA regions capable of alternating their conformations in response to the presence of cellular metabolites and other physical or chemical cues. These classes of RNA pass on cellular and environmental information directly to transcription or translation machinery without the assistance of proteins. The riboswitches are commonly defined as evolutionarily conserved mRNA regions capable of specific binding to metabolite molecules, and, as a result, adopting a particular RNA conformation that modulates gene expression. 380 pp. Englisch. Seller Inventory # 9781617379475
Quantity: 2 available
Seller: moluna, Greven, Germany
Kartoniert / Broschiert. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A comprehensive and timely reference volume for basic and applied research on regulatory RNAsCovers a wide range of assay formats and systems from the computerized prediction of regulatory RNA elements to their detailed structure-function characte. Seller Inventory # 4257074
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 812. Seller Inventory # C9781617379475
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The transfer of hereditary information from genes to proteins is one of the essential pr- esses in all living organisms on our planet. Some genes are expressed without modu- tion throughout the life of a cell, while many others require various degrees of control to precisely balance cellular metabolism with environmental conditions. For many years, researchers attributed this regulatory function to protein molecules, which can direct gene expression at multiple levels, in response to various input signals, and with different degrees of selectivity. Even when the control of gene expression was achieved via direct interactions between proteins and mRNAs, the active role was routinely assigned to p- teins, while RNAs were considered merely as recipient molecules. The discovery of RNA interference and multiple bacterial regulatory RNAs caused a shift from the perception of proteins as the predominant regulators of gene expression to the acknowledgement of the importance of RNAs in many regulatory circuits. Such a viewpoint received strong support several years ago after the discovery of riboswitches and related RNA sensors - mRNA regions capable of alternating their conformations in response to the presence of cellular metabolites and other physical or chemical cues. These classes of RNA pass on cellular and environmental information directly to transcription or translation machinery without the assistance of proteins. The riboswitches are commonly defined as evolutionarily conserved mRNA regions capable of specific binding to metabolite molecules, and, as a result, adopting a particular RNA conformation that modulates gene expression. Seller Inventory # 9781617379475
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The transfer of hereditary information from genes to proteins is one of the essential pr- esses in all living organisms on our planet. Some genes are expressed without modu- tion throughout the life of a cell, while many others require various degrees of control to precisely balance cellular metabolism with environmental conditions. For many years, researchers attributed this regulatory function to protein molecules, which can direct gene expression at multiple levels, in response to various input signals, and with different degrees of selectivity. Even when the control of gene expression was achieved via direct interactions between proteins and mRNAs, the active role was routinely assigned to p- teins, while RNAs were considered merely as recipient molecules. The discovery of RNA interference and multiple bacterial regulatory RNAs caused a shift from the perception of proteins as the predominant regulators of gene expression to the acknowledgement of the importance of RNAs in many regulatory circuits. Such a viewpoint received strong support several years ago after the discovery of riboswitches and related RNA sensors ¿ mRNA regions capable of alternating their conformations in response to the presence of cellular metabolites and other physical or chemical cues. These classes of RNA pass on cellular and environmental information directly to transcription or translation machinery without the assistance of proteins. The riboswitches are commonly defined as evolutionarily conserved mRNA regions capable of specific binding to metabolite molecules, and, as a result, adopting a particular RNA conformation that modulates gene expression.Humana Press in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 380 pp. Englisch. Seller Inventory # 9781617379475
Quantity: 1 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2811580148673
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 377 pages. 11.02x8.27x0.86 inches. In Stock. Seller Inventory # x-1617379476
Quantity: 2 available