Provides an introduction to the Finite Difference Time Domain method and shows how Python code can be used to implement various simulations
This book allows engineering students and practicing engineers to learn the finite-difference time-domain (FDTD) method and properly apply it toward their electromagnetic simulation projects. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Included projects increase in complexity, ranging from simulations in free space to propagation in dispersive media. This third edition utilizes the Python programming language, which is becoming the preferred computer language for the engineering and scientific community.
Electromagnetic Simulation Using the FDTD Method with Python, Third Edition is written with the goal of enabling readers to learn the FDTD method in a manageable amount of time. Some basic applications of signal processing theory are explained to enhance the effectiveness of FDTD simulation. Topics covered in include one-dimensional simulation with the FDTD method, two-dimensional simulation, and three-dimensional simulation. The book also covers advanced Python features and deep regional hyperthermia treatment planning.
Electromagnetic Simulation Using the FDTD Method with Python:
An ideal book for senior undergraduate engineering students studying FDTD, Electromagnetic Simulation Using the FDTD Method with Python will also benefit scientists and engineers interested in the subject.
"synopsis" may belong to another edition of this title.
Jennifer E. Houle is the Vice President for Research at Moscow-Berlin Simulations. She also worked as a Senior Product Engineer at Micron Technology. She has a Masters degree in Electrical Engineering from the University of Idaho. Her work has been published in the International Journal of Magnetics and Electromagnetism and the Symposium on Nonlinear Optics and Sum Rules, and her research was presented at the 32nd Annual Meeting of the European Hyperthermic Oncology Society.
Dennis M. Sullivan, PhD, is Professor of Electrical and Computer Engineering at the University of Idaho. His research interests are electromagnetic and quantum simulation, and include hyperthermia cancer therapy, nonlinear optical simulation, and quantum semiconductor simulation. In 2013 he was made a fellow of the Institute of Electrical and Electronic Engineers. He published the first edition of Electromagnetic Simulation Using the FDTD Method with Wiley in 2001 and the second edition in 2013.
Provides an introduction to the Finite-Difference Time-Domain method and shows how Python code can be used to implement various simulations
This book allows engineering students and practicing engineers to learn the finite-difference time-domain (FDTD) method and properly apply it toward their electromagnetic simulation projects. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Included projects increase in complexity, ranging from simulations in free space to propagation in dispersive media. This third edition utilizes the Python programming language, which is becoming the preferred computer language for the engineering and scientific community.
Electromagnetic Simulation Using the FDTD Method with Python, Third Edition is written with the goal of enabling readers to learn the FDTD method in a manageable amount of time. Some basic applications of signal processing theory are explained to enhance the effectiveness of FDTD simulation. Topics covered include one-dimensional simulation with the FDTD method, two-dimensional simulation, and three-dimensional simulation. The book also covers advanced Python features and deep regional hyperthermia treatment planning.
Electromagnetic Simulation Using the FDTD Method with Python, Third Edition:
An ideal book for senior undergraduate engineering students studying FDTD, Electromagnetic Simulation Using the FDTD Method with Python, Third Edition will also benefit scientists and engineers interested in the subject.
Provides an introduction to the Finite-Difference Time-Domain method and shows how Python code can be used to implement various simulations
This book allows engineering students and practicing engineers to learn the finite-difference time-domain (FDTD) method and properly apply it toward their electromagnetic simulation projects. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Included projects increase in complexity, ranging from simulations in free space to propagation in dispersive media. This third edition utilizes the Python programming language, which is becoming the preferred computer language for the engineering and scientific community.
Electromagnetic Simulation Using the FDTD Method with Python, Third Edition is written with the goal of enabling readers to learn the FDTD method in a manageable amount of time. Some basic applications of signal processing theory are explained to enhance the effectiveness of FDTD simulation. Topics covered include one-dimensional simulation with the FDTD method, two-dimensional simulation, and three-dimensional simulation. The book also covers advanced Python features and deep regional hyperthermia treatment planning.
Electromagnetic Simulation Using the FDTD Method with Python, Third Edition:
An ideal book for senior undergraduate engineering students studying FDTD, Electromagnetic Simulation Using the FDTD Method with Python, Third Edition will also benefit scientists and engineers interested in the subject.
"About this title" may belong to another edition of this title.
FREE shipping within United Kingdom
Destination, rates & speedsSeller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 33859620
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 33859620-n
Quantity: Over 20 available
Seller: CitiRetail, Stevenage, United Kingdom
Hardcover. Condition: new. Hardcover. Provides an introduction to the Finite Difference Time Domain method and shows how Python code can be used to implement various simulations This book allows engineering students and practicing engineers to learn the finite-difference time-domain (FDTD) method and properly apply it toward their electromagnetic simulation projects. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Included projects increase in complexity, ranging from simulations in free space to propagation in dispersive media. This third edition utilizes the Python programming language, which is becoming the preferred computer language for the engineering and scientific community. Electromagnetic Simulation Using the FDTD Method with Python, Third Edition is written with the goal of enabling readers to learn the FDTD method in a manageable amount of time. Some basic applications of signal processing theory are explained to enhance the effectiveness of FDTD simulation. Topics covered in include one-dimensional simulation with the FDTD method, two-dimensional simulation, and three-dimensional simulation. The book also covers advanced Python features and deep regional hyperthermia treatment planning. Electromagnetic Simulation Using the FDTD Method with Python: Guides the reader from basic programs to complex, three-dimensional programs in a tutorial fashionIncludes a rewritten fifth chapter that illustrates the most interesting applications in FDTD and the advanced graphics techniques of PythonCovers peripheral topics pertinent to time-domain simulation, such as Z-transforms and the discrete Fourier transformProvides Python simulation programs on an accompanying website An ideal book for senior undergraduate engineering students studying FDTD, Electromagnetic Simulation Using the FDTD Method with Python will also benefit scientists and engineers interested in the subject. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9781119565802
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781119565802_new
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L1-9781119565802
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 33859620
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
HRD. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L1-9781119565802
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 369553871
Quantity: 3 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 33859620-n
Quantity: Over 20 available
Seller: BooksRun, Philadelphia, PA, U.S.A.
Hardcover. Condition: Good. 3. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Seller Inventory # 1119565804-11-1
Quantity: 1 available