Probability (v. 2) (Handbook of Applicable Mathematics) - Hardcover

Lloyd, Emlyn

 
9780471278214: Probability (v. 2) (Handbook of Applicable Mathematics)

Synopsis

Probability is the measure of the likelihood that an event will occur.[1] Probability is quantified as a number between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty).[2][3] The higher the probability of an event, the more certain we are that the event will occur. A simple example is the tossing of a fair (unbiased) coin. Since the coin is unbiased, the two outcomes ("head" and "tail") are equally probable; the probability of "head" equals the probability of "tail." Since no other outcome is possible, the probability is 1/2 (or 50%) of either "head" or "tail". In other words, the probability of "head" is 1 out of 2 outcomes and the probability of "tail" is also, 1 out of 2 outcomes. These concepts have been given an axiomatic mathematical formalization in probability theory (see probability axioms), which is used widely in such areas of study as mathematics, statistics, finance, gambling, science (in particular physics), artificial intelligence/machine learning, computer science, game theory, and philosophy to, for example, draw inferences about the expected frequency of events. Probability theory is also used to describe the underlying mechanics and regularities of complex systems.[4] Wikipedia

"synopsis" may belong to another edition of this title.