Partial differential equations are a central concept in mathematics. They arise in mathematical models whose dependent variables vary continuously as functions of several independent variables (usually space and time). Their power lies in their universality: there is a huge and ever-growing range of real-world problems to which they can be applied, from fluid mechanics and electromagnetism to probability and finance. This is an enthusiastic and clear guide to the theory and applications of PDEs. It deals with questions such as the well-posedness of a PDE problem: when is there a unique solution that changes only slightly when the input data is slightly changed? This is connected to the problem of establishing the accuracy of a numerical solution to a PDE, a problem that becomes increasingly important as the power of computer software to produce numerical solutions grows. This book is intended for final year undergraduates and graduate students in applied mathematics and engineering.
"synopsis" may belong to another edition of this title.
The book is very well written, equipped with numerous exercises and applications and will serve as a very good textbook both for masters and PhD students. (EMS Newsletter)
John Ockendon and Sam Howison are both at O.C.I.A.M., University of Oxford. Andrew Lacey is at Heriot-Watt University. Alexander Movchan is at the University of Liverpool.
"About this title" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want