Finite Volume Methods for Hyperbolic Problems (Paperback)
Randall J. Leveque
Sold by AussieBookSeller, Truganina, VIC, Australia
AbeBooks Seller since 22 June 2007
New - Soft cover
Condition: New
Quantity: 1 available
Add to basketSold by AussieBookSeller, Truganina, VIC, Australia
AbeBooks Seller since 22 June 2007
Condition: New
Quantity: 1 available
Add to basketPaperback. This book contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods. This book contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, (including both linear problems and nonlinear conservation laws). These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are applied to eliminate numerical oscillations. The methods were orginally designed to capture shock waves accurately, but are also useful tools for studying linear wave-progagation problems, particulary in heterogenous material. The methods studied are in the CLAWPACK software package. Source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Seller Inventory # 9780521009249
"About this title" may belong to another edition of this title.
We guarantee the condition of every book as it's described on the Abebooks web sites. If you're dissatisfied with your purchase (Incorrect Book/Not as Described/Damaged) or if the order hasn't arrived, you're eligible for a refund within 30 days of the estimated delivery date. If you've changed your mind about a book that you've ordered, please use the Ask bookseller a question link to contact us and we'll respond within 2 business days.
Please note that titles are dispatched from our UK and NZ warehouse. Delivery times specified in shipping terms. Orders ship within 2 business days. Delivery to your door then takes 8-15 days.