Applied Neural Networks with TensorFlow 2 (Paperback)
Orhan Gazi Yalcin
Sold by AussieBookSeller, Truganina, VIC, Australia
AbeBooks Seller since 22 June 2007
New - Soft cover
Condition: New
Quantity: 1 available
Add to basketSold by AussieBookSeller, Truganina, VIC, Australia
AbeBooks Seller since 22 June 2007
Condition: New
Quantity: 1 available
Add to basketPaperback. Implement deep learning applications using TensorFlow while learning the why through in-depth conceptual explanations. Youll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpyothers are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers. You'll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, youll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs. Finally, move into theoretical applications and unsupervised learning with auto-encoders and reinforcement learning with tf-agent models. With this book, youll delve into applied deep learning practical functions and build a wealth of knowledge about how to use TensorFlow effectively. What You'll Learn Compare competing technologies and see why TensorFlow is more popularGenerate text, image, or sound with GANsPredict the rating or preference a user will give to an itemSequence data with recurrent neural networks Who This Book Is For Data scientists and programmers new to the fields of deep learning and machine learning APIs. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Seller Inventory # 9781484265123
Orhan Gazi Yalçın is a joint Ph.D. candidate at the University of Bologna & the Polytechnic University of Madrid. After completing his double major in business and law, he began his career in Istanbul, working for a city law firm, Allen & Overy, and a global entrepreneurship network, Endeavor. During his academic and professional career, he taught himself programming and excelled in machine learning. He currently conducts research on hotly debated law & AI topics such as explainable artificial intelligence and the right to explanation by combining his technical and legal skills. In his spare time, he enjoys free-diving, swimming, exercising as well as discovering new countries, cultures, and cuisines.
"About this title" may belong to another edition of this title.
We guarantee the condition of every book as it's described on the Abebooks web sites. If you're dissatisfied with your purchase (Incorrect Book/Not as Described/Damaged) or if the order hasn't arrived, you're eligible for a refund within 30 days of the estimated delivery date. If you've changed your mind about a book that you've ordered, please use the Ask bookseller a question link to contact us and we'll respond within 2 business days.
Please note that titles are dispatched from our UK and NZ warehouse. Delivery times specified in shipping terms. Orders ship within 2 business days. Delivery to your door then takes 8-15 days.
Order quantity | 25 to 45 business days | 8 to 14 business days |
---|---|---|
First item | £ 27.30 | £ 32.47 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.