Language: English
Published by Springer-Verlag, 1981
First Edition
23,5 x 15,5 cm. Condition: Gut. 1. Auflage. 118 Seiten Innen sauberer, guter Zustand. Softcover, Broschur mit den blichen Bibliotheks-Markierungen, Stempeln und Einträ gen, innen wie au en, siehe Bilder. (Evtl. auch Kleber- und/oder Etikettenreste, sowie -abdrücke durch abgelöste Bibliotheksschilder). Reihe: Lecture Notes in Statistics 4. DC-10-7 Sprache: Englisch Gewicht in Gramm: 186.
Condition: New.
Seller: Antiquariat Deinbacher, Murstetten, Austria
First Edition
8° , Softcover/Paperback. 1.Auflage,. vi, 118 Seiten Einband etwas berieben, Bibl.Ex., innen guter und sauberer Zustand 9783540905479 Sprache: Englisch Gewicht in Gramm: 184.
Language: English
Published by Springer 12.03.1981., 1981
ISBN 10: 0387905472 ISBN 13: 9780387905471
Seller: NEPO UG, Rüsselsheim am Main, Germany
Condition: Gut. 128 Seiten ex Library Book Sprache: Englisch Gewicht in Gramm: 198 23,5 x 15,5 x 0,7 cm, Taschenbuch Auflage: Softcover reprint of the original 1st ed. 1981.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
£ 47.99
Quantity: Over 20 available
Add to basketCondition: New. In.
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New.
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 124.
Seller: BennettBooksLtd, San Diego, NV, U.S.A.
paperback. Condition: New. In shrink wrap. Looks like an interesting title!
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - A stochastic process {X(t): 0 S t i}, i E S, are increasing (decreasing) with t on T. Stochastic monotonicity is a basic structural property for process behaviour. It gives rise to meaningful bounds for various quantities such as the moments of the process, and provides the mathematical groundwork for approximation algorithms. Obviously, stochastic monotonicity becomes a more tractable subject for analysis if the processes under consideration are such that stochastic mono tonicity on an inter val 0 t E implies stochastic monotonicity on the entire time axis. DALEY (1968) was the first to discuss a similar property in the context of discrete time Markov chains. Unfortunately, he called this property 'stochastic monotonicity', it is more appropriate, however, to speak of processes with monotone transition operators. KEILSON and KESTER (1977) have demonstrated the prevalence of this phenomenon in discrete and continuous time Markov processes. They (and others) have also given a necessary and sufficient condition for a (temporally homogeneous) Markov process to have monotone transition operators. Whether or not such processes will be stochas tically monotone as defined above, now depends on the initial state distribution. Conditions on this distribution for stochastic mono tonicity on the entire time axis to prevail were given too by KEILSON and KESTER (1977).
Language: English
Published by Springer, Humana Feb 1981, 1981
ISBN 10: 0387905472 ISBN 13: 9780387905471
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A stochastic process {X(t): 0 S t i}, i E S, are increasing (decreasing) with t on T. Stochastic monotonicity is a basic structural property for process behaviour. It gives rise to meaningful bounds for various quantities such as the moments of the process, and provides the mathematical groundwork for approximation algorithms. Obviously, stochastic monotonicity becomes a more tractable subject for analysis if the processes under consideration are such that stochastic mono tonicity on an inter val 0 t E implies stochastic monotonicity on the entire time axis. DALEY (1968) was the first to discuss a similar property in the context of discrete time Markov chains. Unfortunately, he called this property 'stochastic monotonicity', it is more appropriate, however, to speak of processes with monotone transition operators. KEILSON and KESTER (1977) have demonstrated the prevalence of this phenomenon in discrete and continuous time Markov processes. They (and others) have also given a necessary and sufficient condition for a (temporally homogeneous) Markov process to have monotone transition operators. Whether or not such processes will be stochas tically monotone as defined above, now depends on the initial state distribution. Conditions on this distribution for stochastic mono tonicity on the entire time axis to prevail were given too by KEILSON and KESTER (1977). 124 pp. Englisch.
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 124 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Language: English
Published by Springer-Verlag New York Inc., 1981
ISBN 10: 0387905472 ISBN 13: 9780387905471
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
£ 57.37
Quantity: Over 20 available
Add to basketPaperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 124.
Seller: moluna, Greven, Germany
Kartoniert / Broschiert. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A stochastic process {X(t): 0 S t i}, i E S, are increasing (decreasing) with t on T. Stochastic monotonicity is a basi.
Language: English
Published by Springer New York, Springer US Feb 1981, 1981
ISBN 10: 0387905472 ISBN 13: 9780387905471
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -A stochastic process {X(t): 0 S tSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 124 pp. Englisch.
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Stochastic Monotonicity and Queueing Applications of Birth-Death Processes | Erik Van Doorn | Taschenbuch | vi | Englisch | 1981 | Springer | EAN 9780387905471 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.