Search preferences
Skip to main search results

Search filters

Product Type

  • All Product Types 
  • Books (2)
  • Magazines & Periodicals (No further results match this refinement)
  • Comics (No further results match this refinement)
  • Sheet Music (No further results match this refinement)
  • Art, Prints & Posters (No further results match this refinement)
  • Photographs (No further results match this refinement)
  • Maps (No further results match this refinement)
  • Manuscripts & Paper Collectibles (No further results match this refinement)

Condition Learn more

  • New (2)
  • As New, Fine or Near Fine (No further results match this refinement)
  • Very Good or Good (No further results match this refinement)
  • Fair or Poor (No further results match this refinement)
  • As Described (No further results match this refinement)

Binding

Collectible Attributes

Language (1)

Price

Custom price range (£)

Seller Location

  • Kumar, Saravana; Kumar, Naveen

    Language: English

    Published by Grin Verlag, 2013

    ISBN 10: 3656563241 ISBN 13: 9783656563242

    Seller: California Books, Miami, FL, U.S.A.

    Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

    Contact seller

    £ 27.87

    Free Shipping
    Ships within U.S.A.

    Quantity: Over 20 available

    Add to basket

    Condition: New.

  • Saravana Kumar

    Language: English

    Published by GRIN Verlag, GRIN Verlag Dez 2013, 2013

    ISBN 10: 3656563241 ISBN 13: 9783656563242

    Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

    Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

    Contact seller

    Print on Demand

    £ 14.18

    £ 19.85 shipping
    Ships from Germany to U.S.A.

    Quantity: 2 available

    Add to basket

    Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Master's Thesis from the year 2013 in the subject Computer Science - Miscellaneous, grade: 1, , course: ME computer science, language: English, abstract: This paper investigates how demand-side factors contribute to the Internet's 'Long Tail' phenomenon. It first models how a reduction in search costs will affect the concentration in product sales. Then, by analyzing data collected from a multi-channel retailing company, it provides empirical evidence that the Internet channel exhibits a significantly less concentrated sales distribution, when compared with traditional channels. The difference in the sales distribution is highly significant, even after controlling for consumer differences. Furthermore, the effect is particularly strong for individuals with more prior experience using the Internet channel. We find evidence that Internet purchases made by consumers with prior Internet experience are more skewed toward obscure products, compared with consumers who have no such experience. We observe the opposite outcome when comparing purchases by the same consumers through the catalog channel. If the relationships we uncover persist, the underlying trends in technology and search costs portend an ongoing shift in the distribution of product sales. Singular Value Decomposition (SVD), together with the Expectation-Maximization (EM) procedure, can be used to find a low-dimension model that maximizes the log likelihood of observed ratings in recommendation systems. However, the computational cost of this approach is a major concern, since each iteration of the EM algorithm requires a new SVD computation. We present a novel algorithm that incorporates SVD approximation into the EM procedure to reduce the overall computational cost while maintaining accurate predictions. Furthermore, we propose a new framework for collaborating filtering in distributed recommendation systems that allows users to maintain their own rating profiles for privacy. We conduct offline and online tests of our ranking algorithm. We use Yahoo! Search queries that resulted in a click on a Yahoo! Movies or Internet Movie Database (IMDB) movie URL. Our online test involved 44 Yahoo! Employees providing subjective assessments of results quality. In both tests, our ranking methods show significantly better recall and quality than IMDB search and Yahoo! Movies current search. Reduced rank approximation of matrices has hitherto been possible only by un-weighted least squares. This paper presents iterative techniques for obtaining such approximations when weights are introduced. 20 pp. Englisch.