Seller: Ria Christie Collections, Uxbridge, United Kingdom
£ 139.22
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. In.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
£ 139.22
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. In.
£ 143.10
Convert currencyQuantity: 1 available
Add to basketBuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This text has two goals. It describes a topic: band and band-dominated operators and their Fredholm theory, and it introduces a method to study this topic: limit operators. Band-dominated operators. Let H = [2(Z) be the Hilbert space of all squared summable functions x : Z -+ Xi provided with the norm 2 2 X IIxl1 :=L I iI . iEZ It is often convenient to think of the elements x of [2(Z) as two-sided infinite sequences (Xi)iEZ. The standard basis of [2(Z) is the family of sequences (ei)iEZ where ei = (. . . ,0,0, 1,0,0, . . . ) with the 1 standing at the ith place. Every bounded linear operator A on H can be described by a two-sided infinite matrix (aij)i,jEZ with respect to this basis, where aij = (Aej, ei)' The band operators on H are just the operators with a matrix representation of finite band-width, i. e. , the operators for which aij = 0 whenever Ii - jl > k for some k. Operators which are in the norm closure ofthe algebra of all band operators are called band-dominated. Needless to say that band and band dominated operators appear in numerous branches of mathematics. Archetypal examples come from discretizations of partial differential operators. It is easy to check that every band operator can be uniquely written as a finite sum L dkVk where the d are multiplication operators (i. e.
£ 143.10
Convert currencyQuantity: 1 available
Add to basketTaschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This text has two goals. It describes a topic: band and band-dominated operators and their Fredholm theory, and it introduces a method to study this topic: limit operators. Band-dominated operators. Let H = [2(Z) be the Hilbert space of all squared summable functions x : Z -+ Xi provided with the norm 2 2 X IIxl1 :=L I iI . iEZ It is often convenient to think of the elements x of [2(Z) as two-sided infinite sequences (Xi)iEZ. The standard basis of [2(Z) is the family of sequences (ei)iEZ where ei = (. . . ,0,0, 1,0,0, . . . ) with the 1 standing at the ith place. Every bounded linear operator A on H can be described by a two-sided infinite matrix (aij)i,jEZ with respect to this basis, where aij = (Aej, ei)' The band operators on H are just the operators with a matrix representation of finite band-width, i. e. , the operators for which aij = 0 whenever Ii - jl > k for some k. Operators which are in the norm closure ofthe algebra of all band operators are called band-dominated. Needless to say that band and band dominated operators appear in numerous branches of mathematics. Archetypal examples come from discretizations of partial differential operators. It is easy to check that every band operator can be uniquely written as a finite sum L dkVk where the d are multiplication operators (i. e.
Published by Birkhäuser Basel, Birkhäuser Basel Jun 2004, 2004
ISBN 10: 3764370815 ISBN 13: 9783764370817
Language: English
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
£ 143.10
Convert currencyQuantity: 2 available
Add to basketBuch. Condition: Neu. Neuware -This text has two goals. It describes a topic: band and band-dominated operators and their Fredholm theory, and it introduces a method to study this topic: limit operators. Band-dominated operators. Let H = [2(Z) be the Hilbert space of all squared summable functions x : Z -+ Xi provided with the norm 2 2 X IIxl1 :=L I iI . iEZ It is often convenient to think of the elements x of [2(Z) as two-sided infinite sequences (Xi)iEZ. The standard basis of [2(Z) is the family of sequences (ei)iEZ where ei = (. . . ,0,0, 1,0,0, . . . ) with the 1 standing at the ith place. Every bounded linear operator A on H can be described by a two-sided infinite matrix (aij)i,jEZ with respect to this basis, where aij = (Aej, ei)' The band operators on H are just the operators with a matrix representation of finite band-width, i. e. , the operators for which aij = 0 whenever Ii - jl > k for some k. Operators which are in the norm closure ofthe algebra of all band operators are called band-dominated. Needless to say that band and band dominated operators appear in numerous branches of mathematics. Archetypal examples come from discretizations of partial differential operators. It is easy to check that every band operator can be uniquely written as a finite sum L dkVk where the d are multiplication operators (i. e.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 412 pp. Englisch.
Published by Birkhäuser Basel, Birkhäuser Basel Okt 2012, 2012
ISBN 10: 3034896190 ISBN 13: 9783034896191
Language: English
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
£ 143.10
Convert currencyQuantity: 2 available
Add to basketTaschenbuch. Condition: Neu. Neuware -This text has two goals. It describes a topic: band and band-dominated operators and their Fredholm theory, and it introduces a method to study this topic: limit operators. Band-dominated operators. Let H = [2(Z) be the Hilbert space of all squared summable functions x : Z -+ Xi provided with the norm 2 2 X IIxl1 :=L I iI . iEZ It is often convenient to think of the elements x of [2(Z) as two-sided infinite sequences (Xi)iEZ. The standard basis of [2(Z) is the family of sequences (ei)iEZ where ei = (. . . ,0,0, 1,0,0, . . . ) with the 1 standing at the ith place. Every bounded linear operator A on H can be described by a two-sided infinite matrix (aij)i,jEZ with respect to this basis, where aij = (Aej, ei)' The band operators on H are just the operators with a matrix representation of finite band-width, i. e. , the operators for which aij = 0 whenever Ii - jl > k for some k. Operators which are in the norm closure ofthe algebra of all band operators are called band-dominated. Needless to say that band and band dominated operators appear in numerous branches of mathematics. Archetypal examples come from discretizations of partial differential operators. It is easy to check that every band operator can be uniquely written as a finite sum L dkVk where the d are multiplication operators (i. e.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 412 pp. Englisch.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
£ 136.81
Convert currencyQuantity: Over 20 available
Add to basketCondition: New.
Seller: Books Puddle, New York, NY, U.S.A.
£ 191.63
Convert currencyQuantity: 4 available
Add to basketCondition: New. pp. xv + 392.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
£ 157.33
Convert currencyQuantity: Over 20 available
Add to basketCondition: New.
Seller: Mispah books, Redhill, SURRE, United Kingdom
Hardcover. Condition: Like New. Like New. book.
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book.
Published by Birkhäuser, Basel-Boston-Berlin, 2004
Seller: Antiquariat Leseband, Freiburg, Germany
First Edition
£ 60.19
Convert currencyQuantity: 1 available
Add to basketHardcover. Condition: Sehr gut. 1. Auflage. Operator Theory Advances and Application vol. 150. 392 S. Oktav. Or.-Pappband. Wohl benutzt. Ein sehr gutes, sauberes Exemplar. Buch.
Seller: moluna, Greven, Germany
£ 121.41
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. First monograph devoted to the limit operators method, including the study of general band-dominated operators and their Fredholm theoryThis is the first monograph devoted to a fairly wide class of operators, namely band and band-dominated ope.
Seller: moluna, Greven, Germany
£ 121.41
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. First monograph devoted to the limit operators method, including the study of general band-dominated operators and their Fredholm theoryThis is the first monograph devoted to a fairly wide class of operators, namely band and band-dominated ope.
Published by Springer, Basel, Birkhäuser Basel, Birkhäuser Okt 2012, 2012
ISBN 10: 3034896190 ISBN 13: 9783034896191
Language: English
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
£ 143.10
Convert currencyQuantity: 2 available
Add to basketTaschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This text has two goals. It describes a topic: band and band-dominated operators and their Fredholm theory, and it introduces a method to study this topic: limit operators. Band-dominated operators. Let H = [2(Z) be the Hilbert space of all squared summable functions x : Z -+ Xi provided with the norm 2 2 X IIxl1 :=L I iI . iEZ It is often convenient to think of the elements x of [2(Z) as two-sided infinite sequences (Xi)iEZ. The standard basis of [2(Z) is the family of sequences (ei)iEZ where ei = (. . . ,0,0, 1,0,0, . . . ) with the 1 standing at the ith place. Every bounded linear operator A on H can be described by a two-sided infinite matrix (aij)i,jEZ with respect to this basis, where aij = (Aej, ei)' The band operators on H are just the operators with a matrix representation of finite band-width, i. e. , the operators for which aij = 0 whenever Ii - jl > k for some k. Operators which are in the norm closure ofthe algebra of all band operators are called band-dominated. Needless to say that band and band dominated operators appear in numerous branches of mathematics. Archetypal examples come from discretizations of partial differential operators. It is easy to check that every band operator can be uniquely written as a finite sum L dkVk where the d are multiplication operators (i. e. 392 pp. Englisch.
Published by Springer, Basel, Birkhäuser Basel, Birkhäuser Jun 2004, 2004
ISBN 10: 3764370815 ISBN 13: 9783764370817
Language: English
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
£ 143.10
Convert currencyQuantity: 2 available
Add to basketBuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This text has two goals. It describes a topic: band and band-dominated operators and their Fredholm theory, and it introduces a method to study this topic: limit operators. Band-dominated operators. Let H = [2(Z) be the Hilbert space of all squared summable functions x : Z -+ Xi provided with the norm 2 2 X IIxl1 :=L I iI . iEZ It is often convenient to think of the elements x of [2(Z) as two-sided infinite sequences (Xi)iEZ. The standard basis of [2(Z) is the family of sequences (ei)iEZ where ei = (. . . ,0,0, 1,0,0, . . . ) with the 1 standing at the ith place. Every bounded linear operator A on H can be described by a two-sided infinite matrix (aij)i,jEZ with respect to this basis, where aij = (Aej, ei)' The band operators on H are just the operators with a matrix representation of finite band-width, i. e. , the operators for which aij = 0 whenever Ii - jl > k for some k. Operators which are in the norm closure ofthe algebra of all band operators are called band-dominated. Needless to say that band and band dominated operators appear in numerous branches of mathematics. Archetypal examples come from discretizations of partial differential operators. It is easy to check that every band operator can be uniquely written as a finite sum L dkVk where the d are multiplication operators (i. e. 392 pp. Englisch.
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. xv + 392.
Seller: Biblios, Frankfurt am main, HESSE, Germany
£ 211.27
Convert currencyQuantity: 4 available
Add to basketCondition: New. PRINT ON DEMAND pp. xv + 392.