Published by LAP LAMBERT Academic Publishing Feb 2010, 2010
ISBN 10: 383834832X ISBN 13: 9783838348322
Language: English
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
£ 43.64
Convert currencyQuantity: 2 available
Add to basketTaschenbuch. Condition: Neu. Neuware -Multiwavelets are wavelets with multiplicity r, that is r scaling functions and r wavelets, which define multiresolution analysis similar to scalar wavelets. They are advantageous over scalar wavelets since they simultaneously posse symmetry and orthogonality. In this work, a new method for constructing multiwavelets with any approximation order is presented. The method involves the derivation of a matrix equation for the desired approximation order. The condition for approximation order is similar to the conditions in the scalar case. Generalized left eigenvectors give the combinations of scaling functions required to reconstruct the desired spline or super function. The method is demonstrated by constructing a specific class of symmetric and non-symmetric multiwavelets with different approximation orders, which include Geranimo-Hardin-Massopust (GHM), Daubechies and Alperts like multi-wavelets, as parameterized solutions. All multi-wavelets constructed in this work, posses the good properties of orthogonality, approximation order and short support.Books on Demand GmbH, Überseering 33, 22297 Hamburg 108 pp. Englisch.
Published by LAP LAMBERT Academic Publishing Feb 2010, 2010
ISBN 10: 383834832X ISBN 13: 9783838348322
Language: English
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
£ 43.64
Convert currencyQuantity: 2 available
Add to basketTaschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Multiwavelets are wavelets with multiplicity r, that is r scaling functions and r wavelets, which define multiresolution analysis similar to scalar wavelets. They are advantageous over scalar wavelets since they simultaneously posse symmetry and orthogonality. In this work, a new method for constructing multiwavelets with any approximation order is presented. The method involves the derivation of a matrix equation for the desired approximation order. The condition for approximation order is similar to the conditions in the scalar case. Generalized left eigenvectors give the combinations of scaling functions required to reconstruct the desired spline or super function. The method is demonstrated by constructing a specific class of symmetric and non-symmetric multiwavelets with different approximation orders, which include Geranimo-Hardin-Massopust (GHM), Daubechies and Alperts like multi-wavelets, as parameterized solutions. All multi-wavelets constructed in this work, posses the good properties of orthogonality, approximation order and short support. 108 pp. Englisch.
Published by LAP LAMBERT Academic Publishing, 2010
ISBN 10: 383834832X ISBN 13: 9783838348322
Language: English
Seller: moluna, Greven, Germany
£ 36.56
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Bhatti Dr AsimDr. Bhatti is affiliated with Center for Intelligent Systems Research, Deakin University, Australia. He s been actively involved in R&D activities in the areas of Computer Vision, Image/Signal processing, Virtual/A.
Published by LAP LAMBERT Academic Publishing, 2010
ISBN 10: 383834832X ISBN 13: 9783838348322
Language: English
Seller: AHA-BUCH GmbH, Einbeck, Germany
£ 43.64
Convert currencyQuantity: 1 available
Add to basketTaschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Multiwavelets are wavelets with multiplicity r, that is r scaling functions and r wavelets, which define multiresolution analysis similar to scalar wavelets. They are advantageous over scalar wavelets since they simultaneously posse symmetry and orthogonality. In this work, a new method for constructing multiwavelets with any approximation order is presented. The method involves the derivation of a matrix equation for the desired approximation order. The condition for approximation order is similar to the conditions in the scalar case. Generalized left eigenvectors give the combinations of scaling functions required to reconstruct the desired spline or super function. The method is demonstrated by constructing a specific class of symmetric and non-symmetric multiwavelets with different approximation orders, which include Geranimo-Hardin-Massopust (GHM), Daubechies and Alperts like multi-wavelets, as parameterized solutions. All multi-wavelets constructed in this work, posses the good properties of orthogonality, approximation order and short support.