Seller: Ria Christie Collections, Uxbridge, United Kingdom
£ 9.54
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. In.
Paperback. Condition: new. Paperback. In this monograph we present sufficient conditions to know if given a positive real number x = 2s and a uniformly discrete set of positive real numbers P, such a number is close enough to the sum of two elements of this set when s does not belong to P. In fact these conditions allows us to obtain bounds for the distance between x = 2s and the sum set P + P in a constructive way. The properties of the distribution function of the set P, F, play an essential role, as expected. We study the case consist that the distribution function of P is subadditive, what is connected to the set of the prime numbers through the Second Hardy-Littlewood Conjecture. Moreover, we also study the wider case consisting of F being relatively subadditive, what is verified by the distribution function of prime numbers (proved by Pierre Dusart in his doctoral thesis). We also distinguish the cases when the distribution function is relatively contractive and when it is not, and obtain results in both cases, using the distribution function in order to estimate distances to P + P. Given a positive real number x = 2s and a uniformly discrete set of positive real numbers P, we investigate sufficient conditions to determine bounds of the distance between such a number and the sums of two elements of this set. We obtain several constructive results which allows us to know these bounds and approximations to the sum set P + P. First we obtain an upper approximation of x = 2s by a sum of two numbers of P, and then we adjust and improve this approximation using the properties of the distribution function consisting of being absolutely or relatively subadditive and also using the eccentricity of the half of the given number, and distinguising between distribution functions which are relatively contractive and those which are not. From other point of view we obtain estimates for the elements of P + P. We use upper bounds for the distribution function in order to obtain results of approximation. We also study these results in the context of the prime numbers. In Chapter 9 we obtain new conditions to determine if given a real number and a uniformly discrete set of real numbers, such a number can be expressed as sum of two elements of this set. Although we obtain several general results, our work is motivated by the particular case of the prime numbers set. Namely, we establish a relationship between bounds for the distribution function such as that of the Second Hardy-Littlewood Conjecture and the Goldbach's Property for uniformly discrete sequences of real numbers. Parametric Number Theory is the part of Number Theory which studies the distribution of uniformly discrete sets of real numbers when their distribution function is completely known except for one or several real parameters, what allows us to obtain some information on the distribution of such sets, and, of course, results on the distribution of uniformly discrete sets whose distribution functions belong to a same family of distributions. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
£ 12.28
Convert currencyQuantity: Over 20 available
Add to basketCondition: As New. Unread book in perfect condition.
£ 12.16
Convert currencyQuantity: Over 20 available
Add to basketCondition: New.
£ 6.53
Convert currencyQuantity: Over 20 available
Add to basketCondition: New.
£ 6.53
Convert currencyQuantity: Over 20 available
Add to basketCondition: As New. Unread book in perfect condition.
Published by Ed. Ayuntamiento de Sevilla- Real Maestranza de caballería - ABC - Fundación El Monte - y otros., 1996
Seller: MINTAKA Libros, Sevilla, SE, Spain
£ 11.62
Convert currencyQuantity: 1 available
Add to basketTapa blanda con solapas. Condition: EXCELENTE ESTADO. // Con motivo de los 150 años de la Feria de Abril. EXPOSICIÓN DE FOTOGRAFÍAS, desde principios de siglo hasta los años setenta, de los reporteros gráficos Serrano, Sánchez de Pando y Gelán. Salón del Apeadero del Real Alcázar. Marzo-Abril de 1996. // 268 pg. Generosamente ilustrado con impresionantes fotografías en B&N que forman un documento gráfico sin igualsobre la feria de Sevilla. ATENCION: EL LIBRO PESA MAS DE 1 KG, EL COSTE DEL ENVÍO ES DE 4,50 EUR. Envio C.REMBOLSO tiene un SOBRECOSTE de 4,00 EUR. 1300 gr. 25 x 25 cm.
Published by Ed. Ayuntamiento de Sevilla- Real Maestranza de caballería - ABC - Fundación El Monte - y otros., 1996
ISBN 10: 8487062709 ISBN 13: 9788487062704
Language: Spanish
Seller: MINTAKA Libros, Sevilla, SE, Spain
£ 9.83
Convert currencyQuantity: 1 available
Add to basketTapa blanda con solapas. // Con motivo de los 150 años de la Feria de Abril. EXPOSICIÓN DE FOTOGRAFÍAS, desde principios de siglo hasta los años setenta, de los reporteros gráficos Serrano, Sánchez de Pando y Gelán. Salón del Apeadero del Real Alcázar. Marzo-Abril de 1996. // 268 pg. Generosamente ilustrado con impresionantes fotografías en B&N que forman un documento gráfico sin igualsobre la feria de Sevilla. ATENCION: EL LIBRO PESA MAS DE 1 KG, EL COSTE DEL ENVÍO ES DE 4,50 EUR. Envio C.REMBOLSO tiene un SOBRECOSTE de 4,00 EUR. 1300 gr. 25 x 25 cm. BUEN ESTADO; muy bueno salvo por lomo y parte de pòrtada deslucidos por la luz.
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
£ 17.44
Convert currencyQuantity: Over 20 available
Add to basketPAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
£ 19.60
Convert currencyQuantity: Over 20 available
Add to basketPAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Seller: California Books, Miami, FL, U.S.A.
£ 17.67
Convert currencyQuantity: Over 20 available
Add to basketCondition: New. Print on Demand.
£ 184.17
Convert currencyQuantity: 1 available
Add to basketTapa blanda. Condition: Nuevo.