£ 33.29
Convert currencyQuantity: 1 available
Add to basketHardcover. Revised ed. 241 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-05430 3540103821 Sprache: Englisch Gewicht in Gramm: 550.
Published by Berlin, Heidelberg : Springer-Verlag, 1981
ISBN 10: 3540103821 ISBN 13: 9783540103820
Language: English
Seller: MW Books, New York, NY, U.S.A.
First Edition
£ 40.42
Convert currencyQuantity: 1 available
Add to basket1st edition. Fine copy in the original colour-printed boards. Remains particularly well-preserved overall; tight, bright, clean and strong. Physical description; X, 244 pp. Notes; Includes bibliographical references and index. Contents; 1. Algebraic Number Fields and Rational Approximation -- §1.1. The units of algebraic number fields -- §1.2. The simultaneous Biophantine approximation of an integral basis -- §1.3. The real eyelotomie field -- §1.4. The units of a eyelotomie field -- §1.5. Continuation -- §1.6. The Drriehlet field -- §1.7. The cubic field -- Notes -- 2. Recurrence Relations and Rational Approximation -- §2.1. The recurrence formula for the elementary symmetric fonction -- §2.2. The generalization of Sn -- §2.3. PV numbers -- § 2.4. The roots of the equation F(x) = 0 -- §2.5. The roots of the equation G(x) = 0 -- §2.6. The roots of the equation E(x) = 0 -- §2.7. The irreducibility of a polynomial -- §2.8. The rational approximations of ?, ?, ? -- Notes -- 3. Uniform Distribution -- §3.1. Uniform distribution -- §3.2. Vinogradov's lemma -- §3.3. The exponential sum and the discrepancy -- §3.4. The number of solutions to the congruence -- §3.5. The solutions of the congruence and the discrepancy -- §3.6. The partial summation formula -- §3.7. The comparison of discrepancies -- §3.8. Eational approximation and the solutions of the congruence -- §3.9. The rational approximation and the discrepancy -- §3.10. The lower estimate of discrepancy -- Notes -- 4. Estimation of Discrepancy -- §4.1. The set of equi-distribution -- §4.2. The Halton theorem -- §4.3. The p set -- §4.4. The gp set -- §4.5. The eonstruetion of good points -- §4.6. The ?s set -- §4.7. The ? set -- §4.8. The ease s = 2 -- §4.9. The glp set -- Notes -- 5. Uniform Distribution and Numerical Integration -- §5.1. The function of bounded variation -- §5.2. Uniform distribution and numerical integration -- §5.3. The lower estimation for the error term of quadrature formula -- §5.4. The quadrature formulas -- Notes -- 6. Periodic Functions -- §6.1. The classes of functions -- §6.2. Several lemmas -- §6.3. The relations between Hs?(C), Qs?(C) and Es?(C) -- §6.4. Periodic functions -- § 6.5. Continuation -- Notes -- 7. Numerical Integration of Periodic Functions -- §7.1. The set of equi-distribution and numerical integration -- §7.2. The p set and numerical integration -- §7.3. The gp set and numerical integration -- §7.4. The lower estimation of the error term for the quadrature formula -- §7.5. The solutions of congruences and numerical integration -- §7.6. The glp set and numerical integration -- §7.7. The Sarygin theorem -- §7.8. The mean error of the quadrature formula -- §7.9. Continuation -- Notes -- 8. Numerical Error for Quadrature Formula -- §8.1. The numerical error -- §8.2. The comparison of good points -- §8.3. The computation of the ? set -- §8.4. The computation of the ?s set -- §8.5. Examples of other F s sets -- §8.6. The computation of a glp set -- §8.7. Several remarks -- §8.8. Tables -- § 8.9. Some examples -- Notes -- 9. Interpolation -- §9.1. Introduction -- §9.2. The set of equi-distribution and interpolation -- §9.3. Several lemmas -- §9.4. The approximate formula of the function of E?s(C) -- §9.5. The approximate formula of the function of Q?s(C) -- §9.6. The Bernoulli polynomial and the approximate polynomial -- §9.7. The ? results -- Notes -- 10. Approximate Solution of Integral Equations and Differential Equations -- §10.1. Several lemmas -- § 10.2. The approximate solution of the Fredholm integral equation of second type -- § 10.3. The approximate solution of the Volterra integral equation of second type -- §10.4. The eigenvalue and eigenfunction of the Fredholm equation -- § 10.5. The Cauehy problem of the partial differential equation of the parabolic type -- § 10.6. The Diriehlet problem of the partial differential equation of the elliptic type -- § 10.7. Several remarks -- Notes -- Appendix Tables. Subjects; Numerical analysis. Arithmeti.
Published by Berlin, Heidelberg : Springer-Verlag, 1981
ISBN 10: 3540103821 ISBN 13: 9783540103820
Language: English
Seller: MW Books Ltd., Galway, Ireland
First Edition
£ 35.79
Convert currencyQuantity: 1 available
Add to basket1st edition. Fine copy in the original colour-printed boards. Remains particularly well-preserved overall; tight, bright, clean and strong. Physical description; X, 244 pp. Notes; Includes bibliographical references and index. Contents; 1. Algebraic Number Fields and Rational Approximation -- §1.1. The units of algebraic number fields -- §1.2. The simultaneous Biophantine approximation of an integral basis -- §1.3. The real eyelotomie field -- §1.4. The units of a eyelotomie field -- §1.5. Continuation -- §1.6. The Drriehlet field -- §1.7. The cubic field -- Notes -- 2. Recurrence Relations and Rational Approximation -- §2.1. The recurrence formula for the elementary symmetric fonction -- §2.2. The generalization of Sn -- §2.3. PV numbers -- § 2.4. The roots of the equation F(x) = 0 -- §2.5. The roots of the equation G(x) = 0 -- §2.6. The roots of the equation E(x) = 0 -- §2.7. The irreducibility of a polynomial -- §2.8. The rational approximations of ?, ?, ? -- Notes -- 3. Uniform Distribution -- §3.1. Uniform distribution -- §3.2. Vinogradov's lemma -- §3.3. The exponential sum and the discrepancy -- §3.4. The number of solutions to the congruence -- §3.5. The solutions of the congruence and the discrepancy -- §3.6. The partial summation formula -- §3.7. The comparison of discrepancies -- §3.8. Eational approximation and the solutions of the congruence -- §3.9. The rational approximation and the discrepancy -- §3.10. The lower estimate of discrepancy -- Notes -- 4. Estimation of Discrepancy -- §4.1. The set of equi-distribution -- §4.2. The Halton theorem -- §4.3. The p set -- §4.4. The gp set -- §4.5. The eonstruetion of good points -- §4.6. The ?s set -- §4.7. The ? set -- §4.8. The ease s = 2 -- §4.9. The glp set -- Notes -- 5. Uniform Distribution and Numerical Integration -- §5.1. The function of bounded variation -- §5.2. Uniform distribution and numerical integration -- §5.3. The lower estimation for the error term of quadrature formula -- §5.4. The quadrature formulas -- Notes -- 6. Periodic Functions -- §6.1. The classes of functions -- §6.2. Several lemmas -- §6.3. The relations between Hs?(C), Qs?(C) and Es?(C) -- §6.4. Periodic functions -- § 6.5. Continuation -- Notes -- 7. Numerical Integration of Periodic Functions -- §7.1. The set of equi-distribution and numerical integration -- §7.2. The p set and numerical integration -- §7.3. The gp set and numerical integration -- §7.4. The lower estimation of the error term for the quadrature formula -- §7.5. The solutions of congruences and numerical integration -- §7.6. The glp set and numerical integration -- §7.7. The Sarygin theorem -- §7.8. The mean error of the quadrature formula -- §7.9. Continuation -- Notes -- 8. Numerical Error for Quadrature Formula -- §8.1. The numerical error -- §8.2. The comparison of good points -- §8.3. The computation of the ? set -- §8.4. The computation of the ?s set -- §8.5. Examples of other F s sets -- §8.6. The computation of a glp set -- §8.7. Several remarks -- §8.8. Tables -- § 8.9. Some examples -- Notes -- 9. Interpolation -- §9.1. Introduction -- §9.2. The set of equi-distribution and interpolation -- §9.3. Several lemmas -- §9.4. The approximate formula of the function of E?s(C) -- §9.5. The approximate formula of the function of Q?s(C) -- §9.6. The Bernoulli polynomial and the approximate polynomial -- §9.7. The ? results -- Notes -- 10. Approximate Solution of Integral Equations and Differential Equations -- §10.1. Several lemmas -- § 10.2. The approximate solution of the Fredholm integral equation of second type -- § 10.3. The approximate solution of the Volterra integral equation of second type -- §10.4. The eigenvalue and eigenfunction of the Fredholm equation -- § 10.5. The Cauehy problem of the partial differential equation of the parabolic type -- § 10.6. The Diriehlet problem of the partial differential equation of the elliptic type -- § 10.7. Several remarks -- Notes -- Appendix Tables. Subjects; Numerical analysis. Arithmetic and logic units, Computer. Mathematics. 1 Kg.
Published by Teubner (in Verwaltung), Leipzig, 1959
Seller: Antiquariat Stefan Krüger, Essen, NRW, Germany
£ 22.37
Convert currencyQuantity: 1 available
Add to basket8 VI, 174 S. Oln. OU.
Published by New York ; Heidelberg ; Berlin : Springer, 1981
ISBN 10: 0387905898 ISBN 13: 9780387905891
Language: English
Seller: Chiemgauer Internet Antiquariat GbR, Altenmarkt, BAY, Germany
First Edition
£ 58.16
Convert currencyQuantity: 1 available
Add to basketOriginalpappband. Condition: Wie neu. XI, 179 Seiten : 6 graphische Darstellungen , Index; 25 cm FRISCHES, SEHR schönes Exemplar. In EXCELLENT shape. We offer a lot of books on PHYSICS and MATHEMATICS on stock in EXCELLENT shape). Sprache: Englisch Gewicht in Gramm: 505.