David Moore, BSc, PhD, DSc, FLS, retired from the Faculty of Life Sciences of the University of Manchester in 2009 after 43 years service to the University. He was born in Liverpool (1st March 1942) but has lived in south Manchester since 1966. Today, he lives in Stockport with his wife, Elizabeth; with daughters Becky (with husband Barney and children Sam and Emily) close at hand in Poynton, and Sophie (with husband Richard and twins Freya and Chloe) living in Timperley. His youngest daughter Amy lives in Warwick with husband Ross, son Finn and daughter Etta.
David's first degree was a 1st Class Joint Honours in Botany and Zoology at the University of Hull in 1963. David traces an interest in fungal physiology to Noel Robertson's stimulating lectures there. His PhD topic dealt with mutant isolation and linkage mapping in the ink-cap mushroom then called Coprinus cinereus (since renamed Coprinopsis cinerea) and part of his research for it was carried out in the John Innes Institute (then at Bayfordbury in Hertfordshire) where John Fincham and Robin Holliday further influenced an impressionable postgraduate.
David moved to an Assistant Lectureship in Genetics at the University of Manchester in 1966. There he decided to study the biochemical genetics of carbohydrate metabolism and started by isolating many hundreds of mutants of C. cinerea which were resistant to growth inhibition by chemical analogues of glucose and fructose. Subsequent research on these covered aspects as diverse as:
* the morphological changes caused by paramorphogens,
* detailed kinetic analysis of sugar transport,
* and, since most of the mutants turned out to be alleles of a single gene, fine structure gene-mapping
* and theoretical considerations of recombination mechanisms.
His research began to emphasise the experimental study of the developmental biology of mushrooms including genetical, biochemical, physiological and microscopical (including ultra-structural), and ultimately molecular analyses of how tissues are constructed and assembled in fungi.
David was elected to Council of the British Mycological Society, 1981-84, and served on the Physiology Special Interest Committee, then from 1984-89 he was Programme Secretary for the Society. He was a Scientific Editor of BMS Symposium Volumes 10 (1985) and 12 (1987) and Production Manager for Volumes 15 (1989) to 19 (1993) inclusive which the Society produced and published itself. He served as Executive Editor of the journal Mycological Research (now called Fungal Biology) from January, 1990 to December 1999.
In the early years of the 21st century David headed the British Mycological Society's (BMS) reaction to the decline in teaching of its science (and, incidentally, the absence of any mention of fungi in the UK National Curriculum for schools) by engaging with the public directly to advance awareness of the role of fungi in everyday life. So the BMS Roadshow was developed as a mobile display that travelled around the country to promote mycology to the general public. Fungus models and live fungi (as the season permitted) attracted the public to the display. Once snared by this attraction the visitor was shown (in display posters) the whole range of fungal science, supermarket biotechnology, garden biodiversity, impact on health, and all the rest. David's team took care to ensure that the content of the Roadshow addressed the entire span of human existence, from breakfast to supper; from food to pharmaceutical; from habitat to household. By showing how much we all depend on fungi, the BMS Roadshow made the links between science, its practical application and its relevance to daily life. Eventually, the BMS Roadshow comprised an exhibition of over 20 square metres of mobile display boards, educational models, posters, booklets, leaflets, with a staff of enthusiastic volunteers that travelled around the UK.
The Roadshow contributed to a total of 34 events, including National Science Week, several Excellence in Cities programmes, and Science Fairs and Festivals. The backbone of the Roadshow calendar, though, was the Royal Horticultural Society's Flower Show programme. The BMS contributed displays at RHS shows around the country, appearing at the Tatton Park Flower Show in July, the Malvern Spring Gardening Show in May, and Malvern Autumn Garden and Country Show towards the end of September. Roadshow displays always attracted enormous public interest and numerous RHS Lindley medals. The total ''through the turnstile'' audience of all these shows totals something like one million people and even if only a small fraction of that total stops at our displays, the Roadshows communicated awareness of fungal biology to a crowd that would fill a Premiership football stadium! That's an audience that few other academics can claim. In April 2017, David and his wife Elizabeth were jointly awarded the British Mycological Society's Award for Outstanding Contribution to Education and Public Outreach.
David also has interests in gravitational biology which arose from one of those 'twists of fate' stories. Early in the afternoon of 26 June 1989 he received a telephone call from Dr Greg Briarty of the University of Nottingham asking if he was interested in suggesting mycological projects for inclusion in the Juno space mission. At the time, he had already developed interests in mushroom (especially Coprinus) developmental biology, but had not thought very seriously about the part that gravity might play in cell biology or development. The phone call spurred that interest and he was able to assemble a proposal.
The project was accepted as one of the 26 experiments to be done on the Juno flight. Helen Sharman eventually flew the eight-day mission to the Soviet orbital complex Mir in 1991, but by that time the scientific hopes of the Juno Mission had been dashed by lack of sponsorship funding. Unfortunately for Juno, like other attempts to put British science into orbit, it felt the kiss of death of a 1989 report to the ruling Science and Engineering Research Council which concluded that there is 'no strong case for becoming seriously involved [in microgravity research].'
British fungi stayed on the ground, but they did contribute to a healthy amount of research on gravitropism. The sorts of experiments which had been planned for Juno were carried out by Berthold Hock's group in Wiehenstephan during the first German-financed Shuttle mission. Most of the results to date were summarised in a review in Mycological Research (1996, 100: 257-273). Along the way, David became a member of the European Space Agency's Life Science Working Group and he was commissioned to edit the report of this group for publication [Moore, D., Bie, P. & Oser, H. (1996): Biological and Medical Research in Space; An Overview of Life Sciences Research in Microgravity. Springer-Verlag: Berlin, Heidelberg & New York (569 pp.) which was republished in softcover format in 2012].
Fungi are not just some peculiar kind of plant, but a Kingdom of eukaryotes in their own right. My research interests revolve around their developmental biology, with emphasis on the cell biology, physiology and genetics of mushroom morphogenesis and the genetics of cultivated mushrooms. Visit David's website at www.davidmoore.org.uk for more complete information.
Most work has been done with the field mushroom Coprinopsis cinerea, but at various times he also worked with many cultivated species. Emphasis being given to devising experimental methods permitting detailed analysis of the control of cell differentiation and tissue morphogenesis in higher fungi. Techniques pioneered include
* in vitro organ cultures of mushroom tissues;
* use of computer-aided image analysis and numerical analytical methods to study developmental dynamics (and subsequently, computer simulation);
* extraction of growth factors and hormones.
Experimental research was directed towards establishing where morphogenetic pattern-forming signals originate, their nature, translocation routes, targets and pattern-forming response pathways. David also researched what happens when differentiated fungal tissues are removed from their growth control factors experimentally (when they regenerate vegetative hyphal tips), the part played by programmed cell death in fungal morphogenesis, and the extracellular matrix which is formed in and around fungal tissues.
David's team also studied
* the effects of metals on fungal morphogenesis;
* biodiversity of shiitake (Lentinula) in the wild and in strains used for cultivation;
* the use of mushrooms and mushroom composts for pollutant degradation.
Novel approaches for application of 3-D computer graphics to the visualisation of confocal microscope images were used to visualise the hyphal branching patterns and hyphal interactions that occur as fungal tissues differentiate. We then devised mathematical models of the processes that lead to fungal morphogenesis, and created life-like computer simulations. In collaboration with Audrius Meškauskas, David completed a comprehensive comparative analysis of all available fungal, animal and plant genomes for the occurrence of developmental gene sequences. Using automated web-agents, over half a million similarity searches were completed in this study, which revealed that there is no molecular similarity between the developmental regulators that control multicellular development in fungi, plants or animals.
Since retirement from the University of Manchester in 2009 David has concentrated on writing and this activity continued into Europe's pandemic lockdown, during which he produced, with colleagues in France and Finland, an action plan to control climate change, which, in time will return the Earth's atmosphere to its pre-industrial condition [this book is entitled 'Aquaculture: Ocean Blue Carbon Meets UN-SDGs']. You should read it!
David is still writing!