Understanding Computational Bayesian Statistics
Bolstad, William M.
Sold by Best Price, Torrance, CA, U.S.A.
AbeBooks Seller since 30 August 2024
New - Hardcover
Condition: New
Quantity: 1 available
Add to basketSold by Best Price, Torrance, CA, U.S.A.
AbeBooks Seller since 30 August 2024
Condition: New
Quantity: 1 available
Add to basketSUPER FAST SHIPPING.
Seller Inventory # 9780470046098
Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistical models, including the multiple linear regression model, the hierarchical mean model, the logistic regression model, and the proportional hazards model.
The book begins with an outline of the similarities and differences between Bayesian and the likelihood approaches to statistics. Subsequent chapters present key techniques for using computer software to draw Monte Carlo samples from the incompletely known posterior distribution and performing the Bayesian inference calculated from these samples. Topics of coverage include:
Using numerous graphs and diagrams, the author emphasizes a step-by-step approach to computational Bayesian statistics. At each step, important aspects of application are detailed, such as how to choose a prior for logistic regression model, the Poisson regression model, and the proportional hazards model. A related Web site houses R functions and Minitab macros for Bayesian analysis and Monte Carlo simulations, and detailed appendices in the book guide readers through the use of these software packages.
Understanding Computational Bayesian Statistics is an excellent book for courses on computational statistics at the upper-level undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who use computer programs to conduct statistical analyses of data and solve problems in their everyday work.
WILLIAM M. BOLSTAD, PHD, is Senior Lecturer in the Department of Statistics at The University of Waikato (New Zealand). Dr. Bolstad's research interests include Bayesian statistics, MCMC methods, recursive estimation techniques, multiprocess dynamic time series models, and forecasting. He is the author of Introduction to Bayesian Statistics, Second Edition, also published by Wiley.
"About this title" may belong to another edition of this title.
When you see an item on our listing, it means we have it available in one of our warehouses right here right now, ready for same day or next day processing of your order. Over 50+ Million books in stock & ready to ship same day. Customer Service is a top priority for us, we want every customer to be 100% satisfied. We offer the world's largest selection of books, music and video. Maintaining an accurate inventory of more than 50+ Million items, we are able to ship your order the same day it is r...
SUPER FAST SHIPPING!
Order quantity | 1 to 3 business days | 1 to 3 business days |
---|---|---|
First item | £ 6.72 | £ 14.95 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.