Stable Solutions of Elliptic Partial Differential Equations
Louis Dupaigne
Sold by Books Puddle, New York, NY, U.S.A.
AbeBooks Seller since 22 November 2018
New - Hardcover
Condition: New
Quantity: 3 available
Add to basketSold by Books Puddle, New York, NY, U.S.A.
AbeBooks Seller since 22 November 2018
Condition: New
Quantity: 3 available
Add to basketStable solutions are ubiquitous in differential equations. They represent meaningful solutions from a physical point of view and appear in many applications, including mathematical physics (combustion, phase transition theory) and geometry (minimal surfaces).
Stable Solutions of Elliptic Partial Differential Equations offers a self-contained presentation of the notion of stability in elliptic partial differential equations (PDEs). The central questions of regularity and classification of stable solutions are treated at length. Specialists will find a summary of the most recent developments of the theory, such as nonlocal and higher-order equations. For beginners, the book walks you through the fine versions of the maximum principle, the standard regularity theory for linear elliptic equations, and the fundamental functional inequalities commonly used in this field. The text also includes two additional topics: the inverse-square potential and some background material on submanifolds of Euclidean space.
Louis Dupaigne is an assistant professor at Université Picardie Jules Verne in Amiens, France.
"About this title" may belong to another edition of this title.
We accept return for those books which are received damamged. Though we take appropriate care in packaing to avoid such situation.