Stable Solutions of Elliptic Partial Differential Equations
Louis Dupaigne
Sold by Chiron Media, Wallingford, United Kingdom
AbeBooks Seller since 2 August 2010
New - Soft cover
Condition: New
Quantity: 10 available
Add to basketSold by Chiron Media, Wallingford, United Kingdom
AbeBooks Seller since 2 August 2010
Condition: New
Quantity: 10 available
Add to basketStable solutions are ubiquitous in differential equations. They represent meaningful solutions from a physical point of view and appear in many applications, including mathematical physics (combustion, phase transition theory) and geometry (minimal surfaces).
Stable Solutions of Elliptic Partial Differential Equations offers a self-contained presentation of the notion of stability in elliptic partial differential equations (PDEs). The central questions of regularity and classification of stable solutions are treated at length. Specialists will find a summary of the most recent developments of the theory, such as nonlocal and higher-order equations. For beginners, the book walks you through the fine versions of the maximum principle, the standard regularity theory for linear elliptic equations, and the fundamental functional inequalities commonly used in this field. The text also includes two additional topics: the inverse-square potential and some background material on submanifolds of Euclidean space.
Louis Dupaigne is an assistant professor at Université Picardie Jules Verne in Amiens, France.
"About this title" may belong to another edition of this title.
TBA
Shipping costs are based on books weighing 2.2 LB, or 1 KG. If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.