Robust Latent Feature Learning for Incomplete Big Data
Di Wu, Wu
Sold by PBShop.store UK, Fairford, GLOS, United Kingdom
AbeBooks Seller since 11 June 1999
New - Soft cover
Condition: New
Quantity: Over 20 available
Add to basketSold by PBShop.store UK, Fairford, GLOS, United Kingdom
AbeBooks Seller since 11 June 1999
Condition: New
Quantity: Over 20 available
Add to basketNew Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Seller Inventory # L0-9789811981418
Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature analysis (LFA) is one of the most popular representation learning methods tailored for incomplete big data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing incomplete big data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing LFA methods do not fully consider such uncertainty.
In this book, the author introduces several robust latent feature learning methods to address such uncertainty for effectively and efficiently analyzing incomplete big data, including robust latent feature learning based on smooth L1-norm, improving robustness of latent feature learningusing L1-norm, improving robustness of latent feature learning using double-space, data-characteristic-aware latent feature learning, posterior-neighborhood-regularized latent feature learning, and generalized deep latent feature learning. Readers can obtain an overview of the challenges of analyzing incomplete big data and how to employ latent feature learning to build a robust model to analyze incomplete big data. In addition, this book provides several algorithms and real application cases, which can help students, researchers, and professionals easily build their models to analyze incomplete big data.
"About this title" may belong to another edition of this title.
Returns Policy
We ask all customers to contact us for authorisation should they wish to return their order. Orders returned without authorisation may not be credited.
If you wish to return, please contact us within 14 days of receiving your order to obtain authorisation.
Returns requested beyond this time will not be authorised.
Our team will provide full instructions on how to return your order and once received our returns department will process your refund.
Please note the cost to return any...
Orders are shipped from our UK warehouse. Delivery thereafter is between 4 and 14 business days. Please contact us if you have any queries about our services or products.
Order quantity | 10 to 17 business days | 10 to 17 business days |
---|---|---|
First item | £ 3.29 | £ 3.29 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.