Robust Formation Control for Multiple Unmanned Aerial Vehicles
Hao Liu
Sold by AHA-BUCH GmbH, Einbeck, Germany
AbeBooks Seller since 14 August 2006
New - Hardcover
Condition: New
Ships from Germany to U.S.A.
Quantity: 2 available
Add to basketSold by AHA-BUCH GmbH, Einbeck, Germany
AbeBooks Seller since 14 August 2006
Condition: New
Quantity: 2 available
Add to basketnach der Bestellung gedruckt Neuware - Printed after ordering - This book is based on the authors' recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances.Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group.Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems.
Seller Inventory # 9781032149400
This book is based on the authors’ recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances.
Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group.
Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems.
Hao Liu received the B.E. degree in control science and engineering from the Northwestern Polytechnical University, Xi'an, China, in 2008, the Ph.D. degree in automatic control from the Tsinghua University, Beijing, China, in 2013. In 2012, he was a visiting student in the Research School of Engineering, Australian National University. From 2013 to 2020, he has been with the School of Astronautics, Beihang University, Beijing, China, where he is currently an Associate Professor. Since 2020, he has been with the Institute of Artificial Intelligence, Beihang University, Beijing, China. From 2017 to 2018, he was a visiting scholar at the University of Texas at Arlington Research Institute, Fort Worth, USA. He received the best paper award on IEEE ICCA 2018. His research interests include formation control, reinforcement learning, robust control, nonlinear control, unmanned aerial vehicles, unmanned underwater vehicles, and multi-agent systems. He serves as an associate editor of Transactions of the Institute of Measurement and Control, and Advanced Control for Applications: Engineering and Industrial Systems.
Deyuan Liu received the B.E. degree in automation from the Beijing University of Chemical Technology, Beijing, China, in 2015, the Ph.D. degree in flight vehicle design from the School of Astronautics, Beihang University, Beijing, China, in 2021. He is currently a Postdoctoral Fellow of Zhuoyue Program in control theory and control engineering with Beihang University, Beijing, China. His current research interests include multi-agent systems, robust control, nonlinear control, formation control, and tail-sitter aircraft control.
Yan Wan is currently a Distinguished University Professor in the Electrical Engineering Department at the University of Texas at Arlington. She received her Ph.D. degree in Electrical Engineering from Washington State University in 2009 and then did postdoctoral training at the University of California, Santa Barbara. Her research interests lie in the modeling, evaluation, and control of large-scale dynamical networks, cyber-physical systems, stochastic networks, and their applications to smart grids, urban aerial mobility, autonomous driving, robot networking, and air traffic management. She is an appointed member of the Board of Governors of the IEEE Control Systems Society (CSS) and serves in the Conference Editorial Board and Technology Conference Editorial Board. She is also a technical committee member of AIAA Intelligent Systems, IEEE CSS Nonlinear Systems and Control, and IEEE CSS Networks and Communication Systems.
Frank L. Lewis is a Member of National Academy of Inventors, a Fellow of IEEE/IFAC/U.K/Institute of Measurement & Control, PE Texas, U.K. Chartered Engineer. He is a UTA Distinguished Scholar Professor, UTA Distinguished Teaching Professor, and Moncrief-O'Donnell Chair at the University of Texas at Arlington Research Institute. He received the bachelor’s degree in physics/EE in 1971 and the M.S.E.E. degree in 1971 from Rice University, Houston, TX, USA, the M.S. degree in aeronautical engineering in 1977 from the University of West Florida, Pensacola, FL, USA, and the Ph.D. degree in electrical engineering in 1981 from the Georgia Institute of Technology, Atlanta, GA, USA. He works in feedback control, intelligent systems, cooperative control systems, and nonlinear systems. He is author of 7 U.S. patents, numerous journal special issues, journal papers, and 20 books, including Optimal Control, Aircraft Control, Optimal Estimation, and Robot Manipulator Control which are used as university textbooks worldwide. He received the Fulbright Research Award, NSF Research Initiation Grant, ASEE Terman Award, Int. Neural Network Soc. Gabor Award, U.K. Inst Measurement & Control Honeywell Field Engineering Medal, IEEE Computational Intelligence Society Neural Networks Pioneer Award, AIAA Intelligent Systems Award. Received Outstanding Service Award from Dallas IEEE Section, selected as Engineer of the year by Ft. Worth IEEE Section. Was listed in Ft. Worth Business Press Top 200 Leaders in Manufacturing. Texas Regents Outstanding Teaching Award 2013.
Kimon P. Valavanis received the Diploma degree in electrical and electronic engineering from the National Technical University of Athens, Athens, Greece, in 1981, and the M.Sc. degree in electrical engineering and the Ph.D. degree in computer and systems engineering from Rensselaer Polytechnic Institute, Troy, NY, USA, in 1984 and 1986, respectively. He is currently a Professor and the Chair of the Electrical and Computer Engineering Department, and also the Acting Chair of the Computer Science Department, University of Denver, Denver, CO, USA. His current research interests include unmanned systems and distributed intelligence systems.
"About this title" may belong to another edition of this title.
General Terms and Conditions and Customer Information / Privacy Policy
I. General Terms and Conditions
§ 1 Basic provisions
(1) The following terms and conditions apply to all contracts that you conclude with us as a provider (AHA-BUCH GmbH) via the Internet platforms AbeBooks and/or ZVAB. Unless otherwise agreed, the inclusion of any of your own terms and conditions used by you will be objected to
(2) A consumer within the meaning of the following regulations is any natural person who concludes...
**Right of withdrawal for consumers **
(A consumer is any natural person who concludes a legal transaction for purposes that can predominantly be attributed neither to their commercial nor their independent professional activity.)
Cancellation
Withdrawal
You have the right to revoke this contract within fourteen days without giving reasons.
The revocation period is fourteen days from the day,
on which you or a third party named by you, who is not the carrier, has taken possession of the goods, provided that you have ordered one or more goods within the framework of a uniform order and these are or will be delivered uniformly;
on which you or a third party named by you, who is not the carrier, has taken possession of the last goods, provided that you have ordered several goods within the framework of a single order and these are delivered separately;
on which you or a third party named by you, who is not the carrier, has taken possession of the last partial shipment or the last piece, provided that you have ordered goods that are delivered in several partial shipments or pieces;
In order to exercise your right of withdrawal, you must inform us (AHA-BUCH GmbH, Garlebsen 48, 37574 Einbeck, telephone number: 05563 9996039, fax number: 05563 9995974, e-mail address: service@aha-buch.de) of your decision to revoke this contract by means of a clear declaration (e.B. a letter sent by post, fax or e-mail). You can use the attached model withdrawal form, but this is not mandatory.
To comply with the revocation period, it is sufficient that you send the notification of the exercise of the right of revocation before the expiry of the revocation period.
Consequences of revocation
If you withdraw from this contract, we shall reimburse you all payments that we have received from you, including delivery costs (with the exception of the additional costs resulting from the fact that you have chosen a different type of delivery than the cheapest standard delivery offered by us), immediately and at the latest within fourteen days from the day on which we received the notification of your revocation of this contract.
For this repayment, we will use the same means of payment that you used for the original transaction, unless expressly agreed otherwise with you; in no case will you be charged any fees for this repayment.
We may withhold reimbursement until we have received the goods back or until you have provided proof that you have returned the goods, whichever is the earlier.
You must return or hand over the goods to us immediately and in any case at the latest within fourteen days from the day on which you inform us of the revocation of this contract. The deadline is met if you send the goods before the expiry of the period of fourteen days.
You bear the direct costs of returning the goods.
You only have to pay for any loss of value of the goods if this loss of value is due to handling of the goods that is not necessary to check the nature, characteristics and functioning of the goods.
Reasons for exclusion or extinction
The right of revocation does not apply to contracts
The right of revocation expires prematurely in the case of contracts
Sample withdrawal form
(If you want to cancel the contract, please fill out this form and send it back.)
To AHA-BUCH GmbH, Garlebsen 48, 37574 Einbeck, fax number: 05563 9995974, e-mail address: service@aha-buch.de :
I/we () hereby revoke the contract concluded by me/us () for the purchase of the following goods ()/
the provision of the following service ()
Ordered on ()/ received on ()
Name of the consumer(s)
Address of the consumer(s)
Signature of the consumer(s) (only in case of notification on paper)
Date
(*) Delete as appropriate.
We ship your order after we received them
for articles on hand latest 24 hours,
for articles with overnight supply latest 48 hours.
In case we need to order an article from our supplier our dispatch time depends on the reception date of the articles, but the articles will be shipped on the same day.
Our goal is to send the ordered articles in the fastest, but also most efficient and secure way to our customers.
| Order quantity | 30 to 40 business days | 7 to 14 business days |
|---|---|---|
| First item | £ 53.59 | £ 62.29 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.