Robot Manipulator Redundancy Resolution
Zhang, Yunong; Jin, Long
Sold by GreatBookPrices, Columbia, MD, U.S.A.
AbeBooks Seller since 6 April 2009
New - Hardcover
Condition: New
Quantity: 18 available
Add to basketSold by GreatBookPrices, Columbia, MD, U.S.A.
AbeBooks Seller since 6 April 2009
Condition: New
Quantity: 18 available
Add to basketIntroduces a revolutionary, quadratic-programming based approach to solving long-standing problems in motion planning and control of redundant manipulators
This book describes a novel quadratic programming approach to solving redundancy resolutions problems with redundant manipulators. Known as ``QP-unified motion planning and control of redundant manipulators'' theory, it systematically solves difficult optimization problems of inequality-constrained motion planning and control of redundant manipulators that have plagued robotics engineers and systems designers for more than a quarter century.
An example of redundancy resolution could involve a robotic limb with six joints, or degrees of freedom (DOFs), with which to position an object. As only five numbers are required to specify the position and orientation of the object, the robot can move with one remaining DOF through practically infinite poses while performing a specified task. In this case redundancy resolution refers to the process of choosing an optimal pose from among that infinite set. A critical issue in robotic systems control, the redundancy resolution problem has been widely studied for decades, and numerous solutions have been proposed. This book investigates various approaches to motion planning and control of redundant robot manipulators and describes the most successful strategy thus far developed for resolving redundancy resolution problems.
Robot Manipulator Redundancy Resolution is must-reading for advanced undergraduates and graduate students of robotics, mechatronics, mechanical engineering, tracking control, neural dynamics/neural networks, numerical algorithms, computation and optimization, simulation and modelling, analog, and digital circuits. It is also a valuable working resource for practicing robotics engineers and systems designers and industrial researchers.
Yunong Zhang, PhD, is a professor at the School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China, and an associate editor at IEEE Transactions on Neural Networks and Learning Systems. He has researched motion planning and control of redundant manipulators and recurrent neural networks for 19 years, and he holds seven authorized patents.
Long Jin is pursuing his doctorate in Communication and Information Systems at the School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China. His main research interests include robotics, neural networks, and intelligent information processing.
"About this title" may belong to another edition of this title.
Company Name: GreatBookPrices
Legal Entity: Expert Trading, LLC
Address: 6310 Stevens Forest, suite 200, Columbia MD 21046
Email address: CustomerService@SuperBookDeals.com
Phone number: 410-964-0026
consumer complaints can be addressed to address above
Registration #: 52-1713923
Authorized representative: Danielle Hainsey
Our warehouses across the globe are fully operational without substantial delays. We are working hard and continue to overcome the daily challenges presented by COVID-19. We appreciate your understanding.
Internal processing of your order will take about 1-2 business days. Please allow an additional 4-14 business days for Media Mail delivery. We have multiple ship-from locations - MD,IL,NJ,UK,IN,NV,TN & GA
Order quantity | 8 to 14 business days | 5 to 14 business days |
---|---|---|
First item | £ 1.97 | £ 1.97 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.