PyTorch 1.x Reinforcement Learning Cookbook
Yuxi (Hayden) Liu
Sold by PBShop.store US, Wood Dale, IL, U.S.A.
AbeBooks Seller since 7 April 2005
New - Soft cover
Condition: New
Quantity: Over 20 available
Add to basketSold by PBShop.store US, Wood Dale, IL, U.S.A.
AbeBooks Seller since 7 April 2005
Condition: New
Quantity: Over 20 available
Add to basketNew Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Seller Inventory # L0-9781838551964
Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes
Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use.
With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game.
By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems.
Machine learning engineers, data scientists and AI researchers looking for quick solutions to different reinforcement learning problems will find this book useful. Although prior knowledge of machine learning concepts is required, experience with PyTorch will be useful but not necessary.
Yuxi (Hayden) Liu is an experienced data scientist who's focused on developing machine learning and deep learning models and systems. He has worked in a variety of data-driven domains and has applied his expertise in reinforcement learning to computational. He is an education enthusiast and the author of a series of ML books. His first book, Python Machine Learning By Example, was a #1 bestseller on Amazon India in 2017 and 2018. His other books include R Deep Learning Projects and Hands-On Deep Learning Architectures with Python published by Packt. He also published five first-authored IEEE transaction and conference papers during his master's research at the University of Toronto.
"About this title" may belong to another edition of this title.
Returns Policy
We ask all customers to contact us for authorisation should they wish to return their order. Orders returned without authorisation may not be credited.
If you wish to return, please contact us within 14 days of receiving your order to obtain authorisation.
Returns requested beyond this time will not be authorised.
Our team will provide full instructions on how to return your order and once received our returns department will process your refund.
Please note the cost to return any...
Books are shipped from our US or UK warehouses. Delivery estimates allow for delivery from either location.