Predictive Methods in Percutaneous Absorption (Hardcover)
Gary P. Moss
Sold by Grand Eagle Retail, Mason, OH, U.S.A.
AbeBooks Seller since 12 October 2005
New - Hardcover
Condition: New
Quantity: 1 available
Add to basketSold by Grand Eagle Retail, Mason, OH, U.S.A.
AbeBooks Seller since 12 October 2005
Condition: New
Quantity: 1 available
Add to basketHardcover. This book sheds new light on the development and use of quantitative models to describe the process of skin permeation. It critically reviews the development of quantitative predictive models of skin absorption and discusses key recommendations for model development. Topics presented include an introduction to skin physiology; the underlying theories of skin absorption; the physical laboratory-based processes used to generate skin absorption data, which is in turn used to construct mathematical models describing the skin permeation process; algorithms of skin permeability including quantitative structure-activity (or permeability) relationships (QSARs or QSPRs); relationships between permeability and molecular properties; the development of formulation-focused approaches to models of skin permeability prediction; the use of artificial membranes, e.g. polydimethylsiloxane as alternatives to mammalian skin; and lastly, the use of novel Machine Learning methods in developing the next generation of predictive skin permeability models.The book will be of interest to all researchers in academia and industry working in pharmaceutical discovery and development, as well as readers from the field of occupational exposure and risk assessment, especially those whose work involves agrochemicals, bulk chemicals and cosmetics. This book sheds new light on the development and use of quantitative models to describe the process of skin permeation. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Seller Inventory # 9783662473702
This book sheds new light on the development and use of quantitative models to describe the process of skin permeation. It critically reviews the development of quantitative predictive models of skin absorption and discusses key recommendations for model development. Topics presented include an introduction to skin physiology; the underlying theories of skin absorption; the physical laboratory-based processes used to generate skin absorption data, which is in turn used to construct mathematical models describing the skin permeation process; algorithms of skin permeability including quantitative structure-activity (or permeability) relationships (QSARs or QSPRs); relationships between permeability and molecular properties; the development of formulation-focused approaches to models of skin permeability prediction; the use of artificial membranes, e.g. polydimethylsiloxane as alternatives to mammalian skin; and lastly, the use of novel Machine Learning methods in developing the next generation of predictive skin permeability models.
The book will be of interest to all researchers in academia and industry working in pharmaceutical discovery and development, as well as readers from the field of occupational exposure and risk assessment, especially those whose work involves agrochemicals, bulk chemicals and cosmetics.
This book sheds new light on the development and use of quantitative models to describe the process of skin permeation. It critically reviews the development of quantitative predictive models of skin absorption and discusses key recommendations for model development. Topics presented include an introduction to skin physiology; the underlying theories of skin absorption; the physical laboratory-based processes used to generate skin absorption data, which is in turn used to construct mathematical models describing the skin permeation process; algorithms of skin permeability including quantitative structure-activity (or permeability) relationships (QSARs or QSPRs); relationships between permeability and molecular properties; the development of formulation-focused approaches to models of skin permeability prediction; the use of artificial membranes, e.g. polydimethylsiloxane as alternatives to mammalian skin; and lastly, the use of novel Machine Learning methods in developing the next generation of predictive skin permeability models.
The book will be of interest to all researchers in academia and industry working in pharmaceutical discovery and development, as well as readers from the field of occupational exposure and risk assessment, especially those whose work involves agrochemicals, bulk chemicals and cosmetics.
"About this title" may belong to another edition of this title.
We guarantee the condition of every book as it¿s described on the Abebooks web sites. If you¿ve changed
your mind about a book that you¿ve ordered, please use the Ask bookseller a question link to contact us
and we¿ll respond within 2 business days.
Books ship from California and Michigan.
Orders usually ship within 2 business days. All books within the US ship free of charge. Delivery is 4-14 business days anywhere in the United States.
Books ship from California and Michigan.
If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.
Order quantity | 6 to 16 business days | 6 to 14 business days |
---|---|---|
First item | £ 37.10 | £ 74.20 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.