In the post-genomic era, a holistic understanding of biological systems and p- cesses,inalltheircomplexity,is criticalincomprehendingnature’schoreography of life. As a result, bioinformatics involving its two main disciplines, namely, the life sciences and the computational sciences, is fast becoming a very promising multidisciplinary research ?eld. With the ever-increasing application of lar- scalehigh-throughputtechnologies,suchasgeneorproteinmicroarraysandmass spectrometry methods, the enormous body of information is growing rapidly. Bioinformaticians are posed with a large number of di?cult problems to solve, arising not only due to the complexities in acquiring the molecular infor- tion but also due to the size and nature of the generated data sets and/or the limitations of the algorithms required for analyzing these data. Although the ?eld of bioinformatics is still in its embryonic stage, the recent advancements in computational and information-theoretic techniques are enabling us to c- ductvariousinsilicotestingandscreeningofmanylab-basedexperimentsbefore these are actually performed in vitro or in vivo. These in silico investigations are providing new insights for interpretation and establishing a new direction for a deeper understanding. Among the various advanced computational methods currently being applied to such studies, the pattern recognition techniques are mostly found to be at the core of the whole discovery process for apprehending the underlying biological knowledge. Thus, we can safely surmise that the - going bioinformatics revolution may, in future, inevitably play a major role in many aspects of medical practice and/or the discipline of life sciences.
This book constitutes the refereed proceedings of the International Workshop on Pattern Recognition in Bioinformatics, PRIB 2008, held in Melbourne, Australia, in October 2008.
The 39 revised full papers presented were carefully reviewed and selected from 121 submissions. The papers discuss the applications of pattern recognition methods in the field of bioinformatics to solve problems in life sciences. The papers are organized in 6 topical parts on protein: structure, function and interaction; learning, classification and clustering; bio-molecular networks and pathways analysis; microarray and gene expression analysis; data mining and knowledge discovery; applications of high performance computing.