PARTIAL DIFFERENTIAL EQUATIONS: TOPICS IN FOURIER ANALYSIS
M.W. WONG
Sold by UK BOOKS STORE, London, LONDO, United Kingdom
AbeBooks Seller since 11 March 2024
New - Soft cover
Condition: NEW
Quantity: 20 available
Add to basketStock Image
Sold by UK BOOKS STORE, London, LONDO, United Kingdom
AbeBooks Seller since 11 March 2024
Condition: NEW
Quantity: 20 available
Add to basketBrand New! Fast Delivery This is an International Edition and ship within 24-48 hours. Deliver by FedEx and Dhl, & Aramex, UPS, & USPS and we do accept APO and PO BOX Addresses. Order can be delivered worldwide within 7-12 days and we do have flat rate for up to 2LB. Extra shipping charges will be requested if the Book weight is more than 5 LB. This Item May be shipped from India, United states & United Kingdom. Depending on your location and availability.
Seller Inventory # Adh 9781466584013
Partial Differential Equations: Topics in Fourier Analysis explains how to use the Fourier transform and heuristic methods to obtain significant insight into the solutions of standard PDE models. It shows how this powerful approach is valuable in getting plausible answers that can then be justified by modern analysis.
Using Fourier analysis, the text constructs explicit formulas for solving PDEs governed by canonical operators related to the Laplacian on the Euclidean space. After presenting background material, it focuses on:
Designed for a one-semester course, this text provides a bridge between the standard PDE course for undergraduate students in science and engineering and the PDE course for graduate students in mathematics who are pursuing a research career in analysis. Through its coverage of fundamental examples of PDEs, the book prepares students for studying more advanced topics such as pseudo-differential operators. It also helps them appreciate PDEs as beautiful structures in analysis, rather than a bunch of isolated ad-hoc techniques.
M.W. Wong is a professor in and former chair of the Department of Mathematics and Statistics at York University in Toronto, Canada. From 2005 to 2009, he was president of the International Society for Analysis, its Applications and Computations (ISAAC).
"About this title" may belong to another edition of this title.