From
Best Price, Torrance, CA, U.S.A.
Seller rating 5 out of 5 stars
AbeBooks Seller since 30 August 2024
SUPER FAST SHIPPING. Seller Inventory # 9780521780681
Leading experts survey the connections between model theory and semialgebraic, subanalytic, p-adic, rigid and diophantine geometry.
Book Description: Model theory has made substantial contributions to semialgebraic, subanalytic, p-adic, rigid and diophantine geometry. In this book, originally published in 2000, leading experts provide the necessary background to understanding the model theory and mathematics behind these applications.
Title: Model Theory, Algebra, and Geometry (...
Publisher: Cambridge University Press
Publication Date: 2000
Binding: Hardcover
Condition: New
Seller: Attic Books (ABAC, ILAB), London, ON, Canada
Hardcover. Condition: ex library-very good. Mathematical Sciences Research Institute Publications 39. vii, 227 p. 24 cm. Ex library with labels on spine and front cover, ink stamps on top edge and title. A little soiling to top edge near spine. Seller Inventory # 145748
Seller: StainesBook, Weybridge, SURRE, United Kingdom
Seller Inventory # SpeedList-SLUSA121
Seller: Antiquariat Bernhardt, Kassel, Germany
Karton. Condition: Sehr gut. Zust: Gutes Exemplar. 227 Seiten, mit Abbildungen, Englisch 472g. Seller Inventory # 494270
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Feb2416190014734
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780521780681_new
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 227 pages. 9.25x6.00x0.75 inches. In Stock. This item is printed on demand. Seller Inventory # __0521780683
Quantity: 1 available
Seller: AussieBookSeller, Truganina, VIC, Australia
Hardcover. Condition: new. Hardcover. Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework for the understanding of old results and more recently has led to significant new results, such as a proof of the Mordell-Lang conjecture for function fields in positive characteristic. Perhaps surprisingly, it is sometimes the most abstract aspects of model theory that are relevant to those applications. This book gives the necessary background for understanding both the model theory and the mathematics behind the applications. Aimed at graduate students and researchers, it contains introductory surveys by leading experts covering the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations), and introducing and discussing the diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) to which the model theory is applied. The book begins with an introduction to model theory by David Marker. It then broadens into three components: pure model theory (Bradd Hart, Dugald Macpherson), geometry(Barry Mazur, Ed Bierstone and Pierre Milman, Jan Denef), and the model theory of fields (Marker, Lou van den Dries, Zoe Chatzidakis). Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework for the understanding of old results and more recently has led to significant new results, such as a proof of the Mordell-Lang conjecture for function fields in positive characteristic. Perhaps surprisingly, it is sometimes the most abstract aspects of model theory that are relevant to those applications. This book gives the necessary background for understanding both the model theory and the mathematics behind the applications. Aimed at graduate students and researchers, it contains introductory surveys by leading experts covering the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations), and introducing and discussing the diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) to which the model theory is applied. The book begins with an introduction to model theory by David Marker. It then broadens into three components: pure model theory (Bradd Hart, Dugald Macpherson), geometry(Barry Mazur, Ed Bierstone and Pierre Milman, Jan Denef), and the model theory of fields (Marker, Lou van den Dries, Zoe Chatzidakis). This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Seller Inventory # 9780521780681
Seller: CitiRetail, Stevenage, United Kingdom
Hardcover. Condition: new. Hardcover. Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework for the understanding of old results and more recently has led to significant new results, such as a proof of the Mordell-Lang conjecture for function fields in positive characteristic. Perhaps surprisingly, it is sometimes the most abstract aspects of model theory that are relevant to those applications. This book gives the necessary background for understanding both the model theory and the mathematics behind the applications. Aimed at graduate students and researchers, it contains introductory surveys by leading experts covering the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations), and introducing and discussing the diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) to which the model theory is applied. The book begins with an introduction to model theory by David Marker. It then broadens into three components: pure model theory (Bradd Hart, Dugald Macpherson), geometry(Barry Mazur, Ed Bierstone and Pierre Milman, Jan Denef), and the model theory of fields (Marker, Lou van den Dries, Zoe Chatzidakis). Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework for the understanding of old results and more recently has led to significant new results, such as a proof of the Mordell-Lang conjecture for function fields in positive characteristic. Perhaps surprisingly, it is sometimes the most abstract aspects of model theory that are relevant to those applications. This book gives the necessary background for understanding both the model theory and the mathematics behind the applications. Aimed at graduate students and researchers, it contains introductory surveys by leading experts covering the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations), and introducing and discussing the diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) to which the model theory is applied. The book begins with an introduction to model theory by David Marker. It then broadens into three components: pure model theory (Bradd Hart, Dugald Macpherson), geometry(Barry Mazur, Ed Bierstone and Pierre Milman, Jan Denef), and the model theory of fields (Marker, Lou van den Dries, Zoe Chatzidakis). This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9780521780681
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Model theory has made substantial contributions to semialgebraic, subanalytic, p-adic, rigid and diophantine geometry. In this book, originally published in 2000, leading experts provide the necessary background to understanding the model theory and mathema. Seller Inventory # 446946893
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condition: new. Hardcover. Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework for the understanding of old results and more recently has led to significant new results, such as a proof of the Mordell-Lang conjecture for function fields in positive characteristic. Perhaps surprisingly, it is sometimes the most abstract aspects of model theory that are relevant to those applications. This book gives the necessary background for understanding both the model theory and the mathematics behind the applications. Aimed at graduate students and researchers, it contains introductory surveys by leading experts covering the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations), and introducing and discussing the diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) to which the model theory is applied. The book begins with an introduction to model theory by David Marker. It then broadens into three components: pure model theory (Bradd Hart, Dugald Macpherson), geometry(Barry Mazur, Ed Bierstone and Pierre Milman, Jan Denef), and the model theory of fields (Marker, Lou van den Dries, Zoe Chatzidakis). Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework for the understanding of old results and more recently has led to significant new results, such as a proof of the Mordell-Lang conjecture for function fields in positive characteristic. Perhaps surprisingly, it is sometimes the most abstract aspects of model theory that are relevant to those applications. This book gives the necessary background for understanding both the model theory and the mathematics behind the applications. Aimed at graduate students and researchers, it contains introductory surveys by leading experts covering the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations), and introducing and discussing the diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) to which the model theory is applied. The book begins with an introduction to model theory by David Marker. It then broadens into three components: pure model theory (Bradd Hart, Dugald Macpherson), geometry(Barry Mazur, Ed Bierstone and Pierre Milman, Jan Denef), and the model theory of fields (Marker, Lou van den Dries, Zoe Chatzidakis). Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9780521780681