Current-Mode digital circuits have been extensively analyzed and used since the early days of digital ICs. In particular, bipolar Current-Mode digital circuits emerged as an approach to realize digital circuits with the highest speed. Together with its speed performance, CMOS Current-Mode logic has been rediscovered to allow logic gates implementations which, in contrast to classical VLSI CMOS digital circuits, have the feature of low noise level generation. Thus, CMOS Current-Mode gates can be efficiently used inside analog and mixed-signal ICs, which require a low noise silicon environment. For these reasons, until today, many works and results have been published which reinforce the importance of Current-Mode digital circuits. In the topic of Current-Mode digital circuits, the authors spent a lot of effort in the last six years, and their original results highly enhanced both the modeling and the related design methodologies. Since the fundamental Current-Mode logic building block is the classical differential amplifier, the winning idea, that represents the starting point of the authors’ research, was to change the classical point of view typically followed in the investigation and design of Current-Mode digital circuits. In particular, they properly exploited classical paradigms developed and used in the analog circuit domain (a topic in which one of the authors maturated a great experience).
The main focus of this book is to provide the reader with a deep understanding of modeling and design strategies of Current-Mode digital circuits, as well as to organize in a coherent manner all the original and powerful authors' results in the domain of Current-Mode digital circuits. "Model and Design of Bipolar and MOS Current-Mode Logic" includes bipolar Current-Mode digital circuits, which emerged as an approach to realize digital circuits with the highest speed, and CMOS Current-Mode digital circuits, which together with its speed performance has been rediscovered to allow logic gates implementations having the feature of low noise level generation. "Model and Design of Bipolar and MOS Current-Mode Logic" allows the reader not only to understand the operating principle and the features of bipolar and MOS Current-Mode digital circuits, but also to design optimized digital gates. And, although the material is presented in a formal and theoretical manner, much emphasis is devoted to a design perspective.
Moreover, to further link the book's theoretical aspects with practical issues, and to provide the reader with an idea of the real order of magnitude involved assuming actual technologies, numerical examples together with SPICE simulations are included in the book. "Model and Design of Bipolar and MOS Current-Mode Logic" can be used as a reference to practicing engineers working in this area and as text book to senior undergraduate, graduate and postgraduate students (already familiar with electronic circuits and logic gates) who want to extend their knowledge and cover all aspects of the analysis and design of Current-Mode digital circuits.