From
GreatBookPrices, Columbia, MD, U.S.A.
Seller rating 5 out of 5 stars
AbeBooks Seller since 6 April 2009
Seller Inventory # 11862407-n
This monograph is intended to be a complete treatment of the metrical the ory of the (regular) continued fraction expansion and related representations of real numbers. We have attempted to give the best possible results known so far, with proofs which are the simplest and most direct. The book has had a long gestation period because we first decided to write it in March 1994. This gave us the possibility of essentially improving the initial versions of many parts of it. Even if the two authors are different in style and approach, every effort has been made to hide the differences. Let 0 denote the set of irrationals in I = [0,1]. Define the (reg ular) continued fraction transformation T by T (w) = fractional part of n 1/w, w E O. Write T for the nth iterate of T, n E N = {O, 1, ... }, n 1 with TO = identity map. The positive integers an(w) = al(T - (W)), n E N+ = {1,2··· }, where al(w) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),··· , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),···], w E O.
Product Description: The book is essentially based on recent work of the authors. In order to unify and generalize the results obtained so far, new concepts have been introduced, e.g., an infinite order chain representation of the continued fraction expansion of irrationals, the conditional measures associated with, and the extended random variables corresponding to that representation. Also, such procedures as singularization and insertion allow to obtain most of the continued fraction expansions related to the regular continued fraction expansion. The authors present and prove with full details for the first time in book form, the most recent developments in solving the celebrated 1812 Gauss' problem which originated the metrical theory of continued fractions. At the same time, they study exhaustively the Perron-Frobenius operator, which is of basic importance in this theory, on various Banach spaces including that of functions of bounded variation on the unit interval.The book is of interest to research workers and advanced Ph.D. students in probability theory, stochastic processes and number theory.
Title: Metrical Theory of Continued Fractions
Publisher: Springer
Publication Date: 2010
Binding: Soft cover
Condition: New
Seller: moluna, Greven, Germany
Condition: New. Seller Inventory # 5819982
Seller: preigu, Osnabrück, Germany
Taschenbuch. Condition: Neu. Metrical Theory of Continued Fractions | Cor Kraaikamp (u. a.) | Taschenbuch | xix | Englisch | 2010 | Springer Netherland | EAN 9789048161300 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Seller Inventory # 107245391
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0316110337517
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9789048161300_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph is intended to be a complete treatment of the metrical the ory of the (regular) continued fraction expansion and related representations of real numbers. We have attempted to give the best possible results known so far, with proofs which are the simplest and most direct. The book has had a long gestation period because we first decided to write it in March 1994. This gave us the possibility of essentially improving the initial versions of many parts of it. Even if the two authors are different in style and approach, every effort has been made to hide the differences. Let 0 denote the set of irrationals in I = [0,1]. Define the (reg ular) continued fraction transformation T by T (w) = fractional part of n 1/w, w E O. Write T for the nth iterate of T, n E N = {O, 1, . }, n 1 with TO = identity map. The positive integers an(w) = al(T - (W)), n E N+ = {1,2 }, where al(w) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w), , an(w)], w E 0, n---oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w), ], w E O. 404 pp. Englisch. Seller Inventory # 9789048161300
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -This monograph is intended to be a complete treatment of the metrical the ory of the (regular) continued fraction expansion and related representations of real numbers. We have attempted to give the best possible results known so far, with proofs which are the simplest and most direct. The book has had a long gestation period because we first decided to write it in March 1994. This gave us the possibility of essentially improving the initial versions of many parts of it. Even if the two authors are different in style and approach, every effort has been made to hide the differences. Let 0 denote the set of irrationals in I = [0,1]. Define the (reg ular) continued fraction transformation T by T (w) = fractional part of n 1/w, w E O. Write T for the nth iterate of T, n E N = {O, 1, . }, n 1 with TO = identity map. The positive integers an(w) = al(T - (W)), n E N+ = {1,2 }, where al(w) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w), , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w), ], w E O.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 404 pp. Englisch. Seller Inventory # 9789048161300
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph is intended to be a complete treatment of the metrical the ory of the (regular) continued fraction expansion and related representations of real numbers. We have attempted to give the best possible results known so far, with proofs which are the simplest and most direct. The book has had a long gestation period because we first decided to write it in March 1994. This gave us the possibility of essentially improving the initial versions of many parts of it. Even if the two authors are different in style and approach, every effort has been made to hide the differences. Let 0 denote the set of irrationals in I = [0,1]. Define the (reg ular) continued fraction transformation T by T (w) = fractional part of n 1/w, w E O. Write T for the nth iterate of T, n E N = {O, 1, . }, n 1 with TO = identity map. The positive integers an(w) = al(T - (W)), n E N+ = {1,2 }, where al(w) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w), , an(w)], w E 0, n---oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w), ], w E O. Seller Inventory # 9789048161300
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 404. Seller Inventory # 263076211
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 397 pages. 9.00x6.00x0.91 inches. In Stock. Seller Inventory # x-9048161304
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 404 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Seller Inventory # 5853100