From
Kennys Bookstore, Olney, MD, U.S.A.
Seller rating 4 out of 5 stars
AbeBooks Seller since 9 October 2009
This detailed book presents a comprehensive study on the use of Markov Random Fields for solving computer vision problems. Various vision models are presented, and this third edition includes the most recent advances with new and expanded sections. Series: Advances in Computer Vision and Pattern Recognition. Num Pages: 384 pages, 111 black & white illustrations, 11 black & white tables, biography. BIC Classification: PBT; UYQV. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 234 x 156 x 22. Weight in Grams: 713. . 2009. 3rd ed. 2009. Hardback. . . . . Books ship from the US and Ireland. Seller Inventory # V9781848002784
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.
From the Back Cover:
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables systematic development of optimal vision algorithms when used with optimization principles.
This detailed and thoroughly enhanced third edition presents a comprehensive study / reference to theories, methodologies and recent developments in solving computer vision problems based on MRFs, statistics and optimization. It treats various problems in low- and high-level computational vision in a systematic and unified way within the MAP-MRF framework. Among the main issues covered are: how to use MRFs to encode contextual constraints that are indispensable to image understanding; how to derive the objective function for the optimal solution to a problem; and how to design computational algorithms for finding an optimal solution.
Easy-to-follow and coherent, the revised edition is accessible, includes the most recent advances, and has new and expanded sections on such topics as: Conditional Random Fields; Discriminative Random Fields; Total Variation (TV) Models; Spatio-temporal Models; MRF and Bayesian Network (Graphical Models); Belief Propagation; Graph Cuts; and Face Detection and Recognition.
Features:
• Focuses on applying Markov random fields to computer vision problems, such as image restoration and edge detection in the low-level domain, and object matching and recognition in the high-level domain
• Introduces readers to the basic concepts, important models and various special classes of MRFs on the regular image lattice, and MRFs on relational graphs derived from images
• Presents various vision models in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation
• Uses a variety of examples to illustrate how to convert a specific vision problem involving uncertainties and constraints into essentially an optimization problem under the MRF setting
• Studies discontinuities, an important issue in the application of MRFs to image analysis
• Examines the problems of model parameter estimation and function optimization in the context of texture analysis and object recognition
• Includes an extensive list of references
This broad-ranging and comprehensive volume is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses relating to these areas.
Title: Markov Random Field Modeling in Image ...
Publisher: Springer London Ltd
Publication Date: 2009
Binding: Hardcover
Condition: New
Edition: 3rd Edition
Seller: Buchpark, Trebbin, Germany
Condition: Hervorragend. Zustand: Hervorragend | Seiten: 362 | Sprache: Englisch | Produktart: Bücher | This detailed book presents a comprehensive study on the use of Markov Random Fields for solving computer vision problems. Various vision models are presented, and this third edition includes the most recent advances with new and expanded sections. Seller Inventory # 4503624/1
Seller: Buchpark, Trebbin, Germany
Condition: Sehr gut. Zustand: Sehr gut | Seiten: 362 | Sprache: Englisch | Produktart: Bücher | This detailed book presents a comprehensive study on the use of Markov Random Fields for solving computer vision problems. Various vision models are presented, and this third edition includes the most recent advances with new and expanded sections. Seller Inventory # 4503624/12
Seller: Buchpark, Trebbin, Germany
Condition: Sehr gut. Zustand: Sehr gut | Seiten: 362 | Sprache: Englisch | Produktart: Bücher | This detailed book presents a comprehensive study on the use of Markov Random Fields for solving computer vision problems. Various vision models are presented, and this third edition includes the most recent advances with new and expanded sections. Seller Inventory # 4503624/2
Seller: medimops, Berlin, Germany
Condition: as new. Wie neu/Like new. Seller Inventory # M01848002785-N
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Comprehensive coverage over a broad range of Markov Random Field TheoryProvides the most recent advances in the fieldMarkov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpre. Seller Inventory # 4286430
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781848002784_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 5706738-n
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2912160247891
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 5706738-n
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 5706738