Machine Learning for OpenCV: Intelligent image processing with Python
Beyeler, Michael
Sold by Lucky's Textbooks, Dallas, TX, U.S.A.
AbeBooks Seller since 22 July 2022
New - Soft cover
Condition: New
Quantity: Over 20 available
Add to basketSold by Lucky's Textbooks, Dallas, TX, U.S.A.
AbeBooks Seller since 22 July 2022
Condition: New
Quantity: Over 20 available
Add to basketExpand your OpenCV knowledge and master key concepts of machine learning using this practical, hands-on guide.
Key Features:
Book Description:
Machine learning is no longer just a buzzword, it is all around us: from protecting your email, to automatically tagging friends in pictures, to predicting what movies you like. Computer vision is one of today's most exciting application fields of machine learning, with Deep Learning driving innovative systems such as self-driving cars and Google's DeepMind.
OpenCV lies at the intersection of these topics, providing a comprehensive open-source library for classic as well as state-of-the-art computer vision and machine learning algorithms. In combination with Python Anaconda, you will have access to all the open-source computing libraries you could possibly ask for.
Machine learning for OpenCV begins by introducing you to the essential concepts of statistical learning, such as classification and regression. Once all the basics are covered, you will start exploring various algorithms such as decision trees, support vector machines, and Bayesian networks, and learn how to combine them with other OpenCV functionality. As the book progresses, so will your machine learning skills, until you are ready to take on today's hottest topic in the field: Deep Learning.
By the end of this book, you will be ready to take on your own machine learning problems, either by building on the existing source code or developing your own algorithm from scratch!
What You Will Learn:
Who this book is for:
This book targets Python programmers who are already familiar with OpenCV; this book will give you the tools and understanding required to build your own machine learning systems, tailored to practical real-world tasks.
Michael Beyeler is a Postdoctoral Fellow in Neuroengineering and Data Science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye). His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. Michael is an active contributor to several open-source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a Ph.D. in Computer Science from the University of California, Irvine as well as a M.Sc. in Biomedical Engineering and a B.Sc. in Electrical Engineering from ETH Zurich, Switzerland. When he is not nerding out on brains, he can be found on top of a snowy mountain, in front of a live band, or behind the piano.
"About this title" may belong to another edition of this title.
We guarantee the condition of every book as it's described on the AbeBooks web
sites. Please note that used items may not include access codes or cards, CD's
or other accessories, regardless of what is stated in item title. If you need to
guarantee that these items are included, please purchase a brand new copy.
All requests for refunds and/or returns will be processed in accordance with
AbeBooks policies. If you're dissatisfied with your purchase (Incorrect Book/Not
as Described/Damaged) or if ...
Books ordered via expedited shipping should arrive between 2 and 7 business days after shipment confirmation. Books ordered via standard shipping should arrive between 4 and 14 business days after shipment confirmation.