Machine Learning for Advanced Functional Materials
Nirav Joshi
Sold by AHA-BUCH GmbH, Einbeck, Germany
AbeBooks Seller since 14 August 2006
New - Soft cover
Condition: New
Quantity: 1 available
Add to basketSold by AHA-BUCH GmbH, Einbeck, Germany
AbeBooks Seller since 14 August 2006
Condition: New
Quantity: 1 available
Add to basketDruck auf Anfrage Neuware - Printed after ordering - This book presents recent advancements of machine learning methods and their applications in material science and nanotechnologies. It provides an introduction to the field and for those who wish to explore machine learning in modeling as well as conduct data analyses of material characteristics. The book discusses ways to enhance the material's electrical and mechanical properties based on available regression methods for supervised learning and optimization of material attributes. In summary, the growing interest among academics and professionals in the field of machine learning methods in functional nanomaterials such as sensors, solar cells, and photocatalysis is the driving force for behind this book. This is a comprehensive scientific reference book on machine learning for advanced functional materials and provides an in-depth examination of recent achievements in material science by focusing on topical issues using machine learning methods.
Seller Inventory # 9789819903955
This book presents recent advancements of machine learning methods and their applications in material science and nanotechnologies. It provides an introduction to the field and for those who wish to explore machine learning in modeling as well as conduct data analyses of material characteristics. The book discusses ways to enhance the material’s electrical and mechanical properties based on available regression methods for supervised learning and optimization of material attributes. In summary, the growing interest among academics and professionals in the field of machine learning methods in functional nanomaterials such as sensors, solar cells, and photocatalysis is the driving force for behind this book. This is a comprehensive scientific reference book on machine learning for advanced functional materials and provides an in-depth examination of recent achievements in material science by focusing on topical issues using machine learning methods.
Dr. Niravkumar J. Joshi is Physicist, having completed his doctorate at the Maharaja Sayajirao University of Baroda, India. He is Visiting Professor at Federal University of ABC, Brazil. He has postdoctoral experience from South Korea, Brazil, and at the University of California Berkeley, USA, where he developed selective and sensitive microsensors by MEMS techniques. His present research focuses on the synthesis and characterization of oxide nanostructures and 2D material-based gas sensors.
Dr. Vinod Kushvaha earned his Dual Degree (B. Tech. + M. Tech.) from the Indian Institute of Technology Bombay (IIT Bombay) in Civil Engineering (Specialization in Structural Engineering), following that he earned his second master’s and a Ph.D. degree in Mechanical Engineering (focused on Fracture Characterization of Composite Materials under Impact Loading) at Auburn University, Auburn, AL, USA. Presently, Vinod is working at the Indian Institute of Technology Jammu (IIT Jammu) as Assistant Professor in the Civil Engineering department."About this title" may belong to another edition of this title.
General Terms and Conditions and Customer Information / Privacy Policy
I. General Terms and Conditions
§ 1 Basic provisions
(1) The following terms and conditions apply to all contracts that you conclude with us as a provider (AHA-BUCH GmbH) via the Internet platforms AbeBooks and/or ZVAB. Unless otherwise agreed, the inclusion of any of your own terms and conditions used by you will be objected to
(2) A consumer within the meaning of the following regulations is any natural person who concludes...
More InformationWe ship your order after we received them
for articles on hand latest 24 hours,
for articles with overnight supply latest 48 hours.
In case we need to order an article from our supplier our dispatch time depends on the reception date of the articles, but the articles will be shipped on the same day.
Our goal is to send the ordered articles in the fastest, but also most efficient and secure way to our customers.