From
AussieBookSeller, Truganina, VIC, Australia
Seller rating 5 out of 5 stars
AbeBooks Seller since 22 June 2007
Hardcover. "Kernel Based Algorithms for Mining Huge Data Sets" is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas. "Kernel Based Algorithms for Mining Huge Data Sets" is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Seller Inventory # 9783540316817
"Kernel Based Algorithms for Mining Huge Data Sets" is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas.
From the Back Cover:
"Kernel Based Algorithms for Mining Huge Data Sets" is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas.
Title: Kernel Based Algorithms for Mining Huge Data...
Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin
Publication Date: 2006
Binding: Hardcover
Condition: new
Seller: ThriftBooks-Dallas, Dallas, TX, U.S.A.
Hardcover. Condition: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 1.27. Seller Inventory # G3540316817I3N00
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Reports recent research results on Kernel Based Algorithms for Mining Huge Data SetsA book about (machine) learning from (experimental) data This is the first book treating the fields of supervised, semi-supervised an. Seller Inventory # 4887602
Seller: preigu, Osnabrück, Germany
Buch. Condition: Neu. Kernel Based Algorithms for Mining Huge Data Sets | Supervised, Semi-supervised, and Unsupervised Learning | Te-Ming Huang (u. a.) | Buch | xvi | Englisch | 2006 | Springer Berlin | EAN 9783540316817 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Seller Inventory # 102086921
Seller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEOCT25-240090
Seller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condition: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Seller Inventory # ABNR-87495
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020165178
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 4154699-n
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783540316817_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction and shows the similarities and differences between the two most popular unsupervised techniques. 284 pp. Englisch. Seller Inventory # 9783540316817
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - 'Kernel Based Algorithms for Mining Huge Data Sets' is the first book treating the fields of supervised, semi-supervised and unsupervised machine learning collectively. The book presents both the theory and the algorithms for mining huge data sets by using support vector machines (SVMs) in an iterative way. It demonstrates how kernel based SVMs can be used for dimensionality reduction (feature elimination) and shows the similarities and differences between the two most popular unsupervised techniques, the principal component analysis (PCA) and the independent component analysis (ICA). The book presents various examples, software, algorithmic solutions enabling the reader to develop their own codes for solving the problems. The book is accompanied by a website for downloading both data and software for huge data sets modeling in a supervised and semisupervised manner, as well as MATLAB based PCA and ICA routines for unsupervised learning. The book focuses on a broad range of machine learning algorithms and it is particularly aimed at students, scientists, and practicing researchers in bioinformatics (gene microarrays), text-categorization, numerals recognition, as well as in the images and audio signals de-mixing (blind source separation) areas. Seller Inventory # 9783540316817