Learning mathematical modeling need not be difficult. Unlike other books, this book not only lists the equations one-by-one, but explains in detail how they are each derived, used, and finally assembled into a computer program for model simulations. This book shows how mathematics is applied in agriculture, in particular to modeling the growth and yield of a generic crop. Topics covered are agriculture meteorology, solar radiation interception and absorption, evapotranspiration, energy and soil water balance, soil water flow, photosynthesis, respiration, and crop growth development. Rather than covering many modeling approaches but in superficial detail, this book selects one or two widely-used modeling approaches and discusses about them in depth. Principles learned from this book equips readers when they encounter other modeling approaches or when they develop their own crop models.
Why this book is written:
I wrote this book because I wanted a book that explains clearly and in depth how mathematics can be applied in agriculture. I wanted a book that takes the trouble to explain how each equation is derived and how it is used. And finally, I wanted a book that shows how these equations work together and are finally assembled into a computer program for model simulations. I believe my wish list is not unique; it is shared by other agriculturists who desire a book that speaks to them rather at them. Mathematical modeling need not be difficult, but we require a book that does not only list the equations one-by-one but shows how they are derived and used.
What this book is about:
This book is to show how mathematics is applied in agriculture, in particular to modeling the growth and yield of a generic crop. Principles learn from the growth and yield of a generic crop can then be applied to "real" crops such as maize, rice and oil palm. This book explains how each equation is derived and used. Finally, this book shows how all the equations work together for model simulations by assembling them into a C++ computer program.
What this book is not about:
This book is not meant to be a comprehensive discussion about all modeling approaches or widely-used crop models. Rather than covering many modeling approaches but in superficial detail, this book selects one or two widely-used modeling approaches and discusses about them in detail. By discussing a particular method in detail, this equips readers with the necessary principles required when they encounter other modeling approaches or crop models. This book is also not about C++ computer programming. This would require a separate book. Nonetheless, the computer programs in this book are written deliberately in a simple manner so that readers only require a basic knowledge in C++ to understand them. Finally, this book is not a leisure reading material. Although, I have tried my best to explain how each equation is derived, readers are still expected to roll up their sleeves and do some hard work. Readers must think deeply and thoroughly, ask questions, and refer to other reading materials for further clarification or for a deeper understanding.
Who should read this book:
This book is intended for senior undergraduates, postgraduates, academicians and scientists in the field of agriculture. Basic knowledge in mathematics, in particular algebra, trigonometry and calculus, is required. Additional knowledge in basic C++ programming will be helpful to build the computer model.