Geodesic flows of Riemannian metrics on manifolds are one of the classical objects in geometry. A particular place among them is occupied by integrable geodesic flows. We consider them in the context of the general theory of integrable Hamiltonian systems, and in particular, from the viewpoint of a new topological classification theory, which was recently developed for integrable Hamiltonian systems with two degrees of freedom. As a result, we will see that such a new approach is very useful for a deeper understanding of the topology and geometry of integrable geodesic flows. The main object to be studied in our paper is the class of integrable geodesic flows on two-dimensional surfaces. There are many such flows on surfaces of small genus, in particular, on the sphere and torus. On the contrary, on surfaces of genus 9 > 1, no such flows exist in the analytical case. One of the most important and interesting problems consists in the classification of integrable flows up to different equivalence relations such as (1) an isometry, (2) the Liouville equivalence, (3) the trajectory equivalence (smooth and continuous), and (4) the geodesic equivalence. In recent years, a new technique was developed, which gives, in particular, a possibility to classify integrable geodesic flows up to these kinds of equivalences. This technique is presented in our paper, together with various applications. The first part of our book, namely, Chaps.
Presenting a new approach to qualitative analysis of integrable geodesic flows based on the theory of topological classification of integrable Hamiltonian systems, this is the first book to apply this technique systematically to a wide class of integrable systems. The first part of this book provides an introduction to the qualitative theory of integrable Hamiltonian systems and their invariants (symplectic geometry, integrability, the topology of Liouville foliations, the orbital classification theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom, obstructions to integrability, etc). In the second part, the class of integrable geodesic flows on two-dimensional surfaces is discussed both from the classical and contemporary point of view. The authors classify them up to different equivalence relations such as an isometry, the Liouville equivalence, the trajectory equivalence (smooth and continuous), and the geodesic equivalence. A new technique, which provides the possibility to classify integrable geodesic flows up to these kinds of equivalences, is presented together with applications.
Together with systematic presentation of wide material on this subject, this book contains previously unpublished new results, and is enhanced with many original illustrations.