Information-Theoretic Methods in Deep Learning (Hardcover)
Shuangming Yang
Sold by AussieBookSeller, Truganina, VIC, Australia
AbeBooks Seller since 22 June 2007
New - Hardcover
Condition: New
Quantity: 1 available
Add to basketSold by AussieBookSeller, Truganina, VIC, Australia
AbeBooks Seller since 22 June 2007
Condition: New
Quantity: 1 available
Add to basketHardcover. The rapid development of deep learning has led to groundbreaking advancements across various fields, from computer vision to natural language processing and beyond. Information theory, as a mathematical foundation for understanding data representation, learning, and communication, has emerged as a powerful tool in advancing deep learning methods. This Special Issue, "Information-Theoretic Methods in Deep Learning: Theory and Applications", presents cutting-edge research that bridges the gap between information theory and deep learning. It covers theoretical developments, innovative methodologies, and practical applications, offering new insights into the optimization, generalization, and interpretability of deep learning models. The collection includes contributions on: Theoretical frameworks combining information theory with deep learning architectures; Entropy-based and information bottleneck methods for model compression and generalization; Mutual information estimation for feature selection and representation learning; Applications of information-theoretic principles in natural language processing, computer vision, and neural network optimization. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Seller Inventory # 9783725829828
The rapid development of deep learning has led to groundbreaking advancements across various fields, from computer vision to natural language processing and beyond. Information theory, as a mathematical foundation for understanding data representation, learning, and communication, has emerged as a powerful tool in advancing deep learning methods. This Special Issue, "Information-Theoretic Methods in Deep Learning: Theory and Applications", presents cutting-edge research that bridges the gap between information theory and deep learning. It covers theoretical developments, innovative methodologies, and practical applications, offering new insights into the optimization, generalization, and interpretability of deep learning models. The collection includes contributions on: Theoretical frameworks combining information theory with deep learning architectures; Entropy-based and information bottleneck methods for model compression and generalization; Mutual information estimation for feature selection and representation learning; Applications of information-theoretic principles in natural language processing, computer vision, and neural network optimization.
"About this title" may belong to another edition of this title.
We guarantee the condition of every book as it's described on the Abebooks web sites. If you're dissatisfied with your purchase (Incorrect Book/Not as Described/Damaged) or if the order hasn't arrived, you're eligible for a refund within 30 days of the estimated delivery date. If you've changed your mind about a book that you've ordered, please use the Ask bookseller a question link to contact us and we'll respond within 2 business days.
Please note that titles are dispatched from our UK and NZ warehouse. Delivery times specified in shipping terms. Orders ship within 2 business days. Delivery to your door then takes 8-15 days.
Order quantity | 25 to 60 business days | 8 to 59 business days |
---|---|---|
First item | £ 27.57 | £ 32.79 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.