Hamiltonian Cycle Problem and Markov Chains
Vivek S. Borkar
Sold by THE SAINT BOOKSTORE, Southport, United Kingdom
AbeBooks Seller since 14 June 2006
New - Hardcover
Condition: New
Quantity: Over 20 available
Add to basketSold by THE SAINT BOOKSTORE, Southport, United Kingdom
AbeBooks Seller since 14 June 2006
Condition: New
Quantity: Over 20 available
Add to basketThis item is printed on demand. New copy - Usually dispatched within 5-9 working days 521.
Seller Inventory # C9781461432319
This research monograph summarizes a line of research that maps certain classical problems of discrete mathematics and operations research - such as the Hamiltonian Cycle and the Travelling Salesman Problems - into convex domains where continuum analysis can be carried out. Arguably, the inherent difficulty of these, now classical, problems stems precisely from the discrete nature of domains in which these problems are posed. The convexification of domains underpinning these results is achieved by assigning probabilistic interpretation to key elements of the original deterministic problems. In particular, the approaches summarized here build on a technique that embeds Hamiltonian Cycle and Travelling Salesman Problems in a structured singularly perturbed Markov decision process. The unifying idea is to interpret subgraphs traced out by deterministic policies (including Hamiltonian cycles, if any) as extreme points of a convex polyhedron in a space filled with randomized policies.
The above innovative approach has now evolved to the point where there are many, both theoretical and algorithmic, results that exploit the nexus between graph theoretic structures and both probabilistic and algebraic entities of related Markov chains. The latter include moments of first return times, limiting frequencies of visits to nodes, or the spectra of certain matrices traditionally associated with the analysis of Markov chains. However, these results and algorithms are dispersed over many research papers appearing in journals catering to disparate audiences. As a result, the published manuscripts are often written in a very terse manner and use disparate notation, thereby making it difficult for new researchers to make use of the many reported advances.
Hence the main purpose of this book is to present a concise and yet easily accessible synthesis of the majority of the theoretical and algorithmicresults obtained so far. In addition, the book discusses numerous open questions and problems that arise from this body of work and which are yet to be fully solved. The approach casts the Hamiltonian Cycle Problem in a mathematical framework that permits analytical concepts and techniques, not used hitherto in this context, to be brought to bear to further clarify both the underlying difficulty of NP-completeness of this problem and the relative exceptionality of truly difficult instances. Finally, the material is arranged in such a manner that the introductory chapters require very little mathematical background and discuss instances of graphs with interesting structures that motivated a lot of the research in this topic. More difficult results are introduced later and are illustrated with numerous examples.
This research monograph summarizes a line of research that maps certain classical problems of discrete mathematics and operations research - such as the Hamiltonian cycle and the Travelling Salesman problems – into convex domains where continuum analysis can be carried out. Arguably, the inherent difficulty of these, now classical, problems stems precisely from the discrete nature of domains in which these problems are posed. The convexification of domains underpinning the reported results is achieved by assigning probabilistic interpretation to key elements of the original deterministic problems. In particular, approaches summarized here build on a technique that embeds Hamiltonian Cycle and Traveling Salesman problems in a structured singularly perturbed Markov decision process. The unifying idea is to interpret subgraphs traced out by deterministic policies (including Hamiltonian cycles, if any) as extreme points of a convex polyhedron in a space filled with randomized policies.
The above, innovative, approach has now evolved to the point where there are many, both theoretical and algorithmic, results that exploit the nexus between graph theoretic structures and both probabilistic and algebraic entities of related Markov chains. The latter include moments of first return times, limiting frequencies of visits to nodes, or the spectra of certain matrices traditionally associated with the analysis of Markov chains. However, these results and algorithms are dispersed over more than fifteen research papers appearing in journals catering to disparate audiences such as: MOR, Random Structures and Algorithms, SIAM J. on Discrete Mathematics, Optimization, J. of Mathematical Analysis and Applications and some others. Furthermore, because of the evolution of this topic and specific orientation of these journals, the published manuscripts are often written in a very terse manner and use disparate notation. As such it is difficult for newresearchers to make use of the many advances reported in these papers.
Hence the main purpose of this book is to present a concise and yet, well written, synthesis of the majority of the theoretical and algorithmic results obtained so far. In addition the book will discuss numerous open questions and problems that arise from this body of work and which are yet to be fully solved. The authors believe that their approach casts the Hamiltonian Cycle and Traveling Salesman problems in a mathematical framework that permits analytical concepts and techniques, not used hitherto in their context, to be brought to bear to further clarify both the underlying difficulty of NP-completeness of these problems and the relative exceptionality of truly difficult instances.
Finally, the material is arranged in such a manner that the introductory chapters require very little mathematical background and discuss instances of graphs with interesting structures that motivated a lot of the research in this topic. More difficult results are introduced later but, unlike the research manuscripts where they were originally proved, are illustrated with numerous examples.
"About this title" may belong to another edition of this title.
Please order through the Abebooks checkout. We only take orders through Abebooks - We don't take direct orders by email or phone.
Refunds or Returns: A full refund of the purchase price will be given if returned within 30 days in undamaged condition.
As a seller on abebooks we adhere to the terms explained at http://www.abebooks.co.uk/docs/HelpCentral/buyerIndex.shtml - if you require further assistance please email us at orders@thesaintbookstore.co.uk
If you are a consumer you can cancel the contract in accordance with the following. Consumer means any natural person who is acting for purposes which are outside his trade, business, craft or profession.
INFORMATION REGARDING THE RIGHT OF CANCELLATION
Statutory Right to cancel
You have the right to cancel this contract within 14 days without giving any reason.
The cancellation period will expire after 14 days from the day on which you acquire, or a third party other than the carrier and indicated by you acquires, physical possession of the the last good or the last lot or piece.
To exercise the right to cancel, you must inform us, THE SAINT BOOKSTORE, 50 Devonshire Road, PR9 7BZ, Southport, United Kingdom, 44 17042241479, of your decision to cancel this contract by a clear statement (e.g. a letter sent by post, fax or e-mail). You may use the attached model cancellation form, but it is not obligatory. You can also electronically fill in and submit a clear statement on our website, under "My Purchases" in "My Account". If you use this option, we will communicate to you an acknowledgement of receipt of such a cancellation on a durable medium (e.g. by e-mail) without delay.
To meet the cancellation deadline, it is sufficient for you to send your communication concerning your exercise of the right to cancel before the cancellation period has expired.
Effects of cancellation
If you cancel this contract, we will reimburse to you all payments received from you, including the costs of delivery (except for the supplementary costs arising if you chose a type of delivery other than the least expensive type of standard delivery offered by us).
We may make a deduction from the reimbursement for loss in value of any goods supplied, if the loss is the result of unnecessary handling by you.
We will make the reimbursement without undue delay, and not later than 14 days after the day on which we are informed about your decision to cancel with contract.
We will make the reimbursement using the same means of payment as you used for the initial transaction, unless you have expressly agreed otherwise; in any event, you will not incur any fees as a result of such reimbursement.
We may withhold reimbursement until we have received the goods back or you have supplied evidence of having sent back the goods, whichever is the earliest.
You shall send back the goods or hand them over to us or THE SAINT BOOKSTORE, 50 Devonshire Road, PR9 7BZ, Southport, United Kingdom, 44 17042241479, without undue delay and in any event not later than 14 days from the day on which you communicate your cancellation from this contract to us. The deadline is met if you send back the goods before the period of 14 days has expired. You will have to bear the direct cost of returning the goods. You are only liable for any diminished value of the goods resulting from the handling other than what is necessary to establish the nature, characteristics and functioning of the goods.
Exceptions to the right of cancellation
The right of cancellation does not apply to:
Model withdrawal form
(complete and return this form only if you wish to withdraw from the contract)
To: (THE SAINT BOOKSTORE, 50 Devonshire Road, PR9 7BZ, Southport, United Kingdom, 44 17042241479)
I/We (*) hereby give notice that I/We (*) withdraw from my/our (*) contract of sale of the following goods (*)/for the provision of the following goods (*)/for the provision of the following service (*),
Ordered on (*)/received on (*)
Name of consumer(s)
Address of consumer(s)
Signature of consumer(s) (only if this form is notified on paper)
Date
* Delete as appropriate.
Most orders usually ship within 1-3 business days, but some can take up to 7 days.
| Order quantity | 7 to 28 business days | 7 to 28 business days |
|---|---|---|
| First item | £ 15.96 | £ 17.96 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.