Hamilton-Jacobi-Bellman Equations: Numerical Methods and Applications in Optimal Control
N/A
Sold by Kennys Bookstore, Olney, MD, U.S.A.
AbeBooks Seller since 9 October 2009
New - Hardcover
Condition: New
Quantity: 15 available
Add to basketSold by Kennys Bookstore, Olney, MD, U.S.A.
AbeBooks Seller since 9 October 2009
Condition: New
Quantity: 15 available
Add to basket2018. Hardcover. . . . . . Books ship from the US and Ireland.
Seller Inventory # V9783110542639
Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampère equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations.
Contents
From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton–Jacobi–Bellman equations
Improving policies for Hamilton–Jacobi–Bellman equations by postprocessing
Viability approach to simulation of an adaptive controller
Galerkin approximations for the optimal control of nonlinear delay differential equations
Efficient higher order time discretization schemes for Hamilton–Jacobi–Bellman equations based on diagonally implicit symplectic Runge–Kutta methods
Numerical solution of the simple Monge–Ampere equation with nonconvex Dirichlet data on nonconvex domains
On the notion of boundary conditions in comparison principles for viscosity solutions
Boundary mesh refinement for semi-Lagrangian schemes
A reduced basis method for the Hamilton–Jacobi–Bellman equation within the European Union Emission Trading Scheme
Dante Kalise and Zhiping Rao, Radon Institute, Austria; Karl Kunisch, University of Graz and Radon Institute, Austria.
"About this title" may belong to another edition of this title.
We guarantee the condition of every book as it's described on the Abebooks websites.
If you're dissatisfied with your purchase (Incorrect Book/Not as Described/Damaged) or if the order hasn't arrived, you're eligible for a refund within 30 days of the estimated delivery date.
For any queries please use the contact seller link or send an email to books@kennys.ie
Conor Kenny
All books securely packaged. Some books ship from Ireland.