General-Purpose Optimization Through Information Maximization (Natural Computing Series)

Lockett, Alan J.

ISBN 10: 3662620065 ISBN 13: 9783662620069
Published by Springer, 2020
New Hardcover

From Ria Christie Collections, Uxbridge, United Kingdom Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

AbeBooks Seller since 25 March 2015

This specific item is no longer available.

About this Item

Description:

In. Seller Inventory # ria9783662620069_new

Report this item

Synopsis:

This book examines the mismatch between discrete programs, which lie at the center of modern applied mathematics, and the continuous space phenomena they simulate. The author considers whether we can imagine continuous spaces of programs, and asks what the structure of such spaces would be and how they would be constituted. He proposes a functional analysis of program spaces focused through the lens of iterative optimization.

The author begins with the observation that optimization methods such as Genetic Algorithms, Evolution Strategies, and Particle Swarm Optimization can be analyzed as Estimation of Distributions Algorithms (EDAs) in that they can be formulated as conditional probability distributions. The probabilities themselves are mathematical objects that can be compared and operated on, and thus many methods in Evolutionary Computation can be placed in a shared vector space and analyzed using techniques of functionalanalysis. The core ideas of this book expand from that concept, eventually incorporating all iterative stochastic search methods, including gradient-based methods. Inspired by work on Randomized Search Heuristics, the author covers all iterative optimization methods and not just evolutionary methods. The No Free Lunch Theorem is viewed as a useful introduction to the broader field of analysis that comes from developing a shared mathematical space for optimization algorithms. The author brings in intuitions from several branches of mathematics such as topology, probability theory, and stochastic processes and provides substantial background material to make the work as self-contained as possible.

The book will be valuable for researchers in the areas of global optimization, machine learning, evolutionary theory, and control theory.

About the Author:

Alan J. Lockett received his PhD in 2012 at the University of Texas at Austin under the supervision of Risto Miikkulainen, where his research topics included estimation of temporal probabilistic models, evolutionary computation theory, and learning neural network controllers for robotics. After a postdoc in IDSIA (Lugano) with Jürgen Schmidhuber he now works for CS Disco in Houston.

"About this title" may belong to another edition of this title.

Bibliographic Details

Title: General-Purpose Optimization Through ...
Publisher: Springer
Publication Date: 2020
Binding: Hardcover
Condition: New

Top Search Results from the AbeBooks Marketplace

Seller Image

Alan J. Lockett
Published by Springer Berlin Heidelberg, 2020
ISBN 10: 3662620065 ISBN 13: 9783662620069
New Hardcover
Print on Demand

Seller: moluna, Greven, Germany

Seller rating 4 out of 5 stars 4-star rating, Learn more about seller ratings

Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The book will be valuable for researchers in the areas of global optimization, machine learning, evolutionary theory, and control theoryOptimization is a fundamental problem that recurs across scientific disciplines and is pervasive in informatics. Seller Inventory # 449140103

Contact seller

Buy New

£ 162.10
£ 42.82 shipping
Ships from Germany to U.S.A.

Quantity: Over 20 available

Add to basket

Stock Image

Lockett, Alan J.
Published by Springer, 2020
ISBN 10: 3662620065 ISBN 13: 9783662620069
New Hardcover

Seller: Lucky's Textbooks, Dallas, TX, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # ABLIING23Mar3113020318508

Contact seller

Buy New

£ 177.70
£ 2.98 shipping
Ships within U.S.A.

Quantity: Over 20 available

Add to basket

Seller Image

Lockett, Alan J.
Published by Springer, 2020
ISBN 10: 3662620065 ISBN 13: 9783662620069
New Hardcover

Seller: GreatBookPrices, Columbia, MD, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 41780225-n

Contact seller

Buy New

£ 178.65
£ 1.97 shipping
Ships within U.S.A.

Quantity: Over 20 available

Add to basket

Stock Image

Alan J. Lockett
ISBN 10: 3662620065 ISBN 13: 9783662620069
New Hardcover

Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Hardcover. Condition: new. Hardcover. This book examines the mismatch between discrete programs, which lie at the center of modern applied mathematics, and the continuous space phenomena they simulate. The author considers whether we can imagine continuous spaces of programs, and asks what the structure of such spaces would be and how they would be constituted. He proposes a functional analysis of program spaces focused through the lens of iterative optimization.The author begins with the observation that optimization methods such as Genetic Algorithms, Evolution Strategies, and Particle Swarm Optimization can be analyzed as Estimation of Distributions Algorithms (EDAs) in that they can be formulated as conditional probability distributions. The probabilities themselves are mathematical objects that can be compared and operated on, and thus many methods in Evolutionary Computation can be placed in a shared vector space and analyzed using techniques of functionalanalysis. The core ideas of this book expand from that concept, eventually incorporating all iterative stochastic search methods, including gradient-based methods. Inspired by work on Randomized Search Heuristics, the author covers all iterative optimization methods and not just evolutionary methods. The No Free Lunch Theorem is viewed as a useful introduction to the broader field of analysis that comes from developing a shared mathematical space for optimization algorithms. The author brings in intuitions from several branches of mathematics such as topology, probability theory, and stochastic processes and provides substantial background material to make the work as self-contained as possible.The book will be valuable for researchers in the areas of global optimization, machine learning, evolutionary theory, and control theory. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9783662620069

Contact seller

Buy New

£ 180.69
Free Shipping
Ships within U.S.A.

Quantity: 1 available

Add to basket

Seller Image

Lockett, Alan J.
Published by Springer, 2020
ISBN 10: 3662620065 ISBN 13: 9783662620069
New Hardcover

Seller: GreatBookPricesUK, Woodford Green, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: New. Seller Inventory # 41780225-n

Contact seller

Buy New

£ 183.95
£ 15 shipping
Ships from United Kingdom to U.S.A.

Quantity: Over 20 available

Add to basket

Seller Image

Alan J. Lockett
ISBN 10: 3662620065 ISBN 13: 9783662620069
New Hardcover

Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Buch. Condition: Neu. Neuware -This book examines the mismatch between discrete programs, which lie at the center of modern applied mathematics, and the continuous space phenomena they simulate. The author considers whether we can imagine continuous spaces of programs, and asks what the structure of such spaces would be and how they would be constituted. He proposes a functional analysis of program spaces focused through the lens of iterative optimization.The author begins with the observation that optimization methods such as Genetic Algorithms, Evolution Strategies, and Particle Swarm Optimization can be analyzed as Estimation of Distributions Algorithms (EDAs) in that they can be formulated as conditional probability distributions. The probabilities themselves are mathematical objects that can be compared and operated on, and thus many methods in Evolutionary Computation can be placed in a shared vector space and analyzed using techniques of functionalanalysis. The core ideas of this book expand from that concept, eventually incorporating all iterative stochastic search methods, including gradient-based methods. Inspired by work on Randomized Search Heuristics, the author covers all iterative optimization methods and not just evolutionary methods. The No Free Lunch Theorem is viewed as a useful introduction to the broader field of analysis that comes from developing a shared mathematical space for optimization algorithms. The author brings in intuitions from several branches of mathematics such as topology, probability theory, and stochastic processes and provides substantial background material to make the work as self-contained as possible.The book will be valuable for researchers in the areas of global optimization, machine learning, evolutionary theory, and control theory.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 580 pp. Englisch. Seller Inventory # 9783662620069

Contact seller

Buy New

£ 192.64
£ 52.44 shipping
Ships from Germany to U.S.A.

Quantity: 2 available

Add to basket

Seller Image

Alan J. Lockett
ISBN 10: 3662620065 ISBN 13: 9783662620069
New Hardcover
Print on Demand

Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book examines the mismatch betweendiscrete programs,which lie at the center ofmodern applied mathematics, and the continuous space phenomena they simulate. The author considers whether we can imagine continuous spacesof programs, and asks what thestructure of such spaceswould beand how they would beconstituted. He proposesa functional analysisof program spaces focused through the lens of iterative optimization.The author begins with the observation that optimization methods such as Genetic Algorithms, Evolution Strategies, and Particle Swarm Optimization can be analyzed as Estimation of Distributions Algorithms (EDAs) in that they can be formulated as conditional probability distributions. The probabilities themselves are mathematical objects that can be compared and operated on, and thus many methods in Evolutionary Computation can be placed in a shared vector space and analyzed using techniques of functional analysis. The core ideas of this book expand from that concept, eventually incorporating all iterative stochastic search methods, including gradient-based methods. Inspired by work on Randomized Search Heuristics, the author covers all iterative optimization methods and not just evolutionary methods. The No Free Lunch Theorem is viewed as a useful introduction to the broader field of analysis that comes from developing a shared mathematical space for optimization algorithms. The author brings in intuitions from several branches of mathematics such as topology, probability theory, and stochastic processes and provides substantial background material to make the work as self-contained as possible.The book will be valuable for researchers in the areas of global optimization, machine learning, evolutionary theory, and control theory. 580 pp. Englisch. Seller Inventory # 9783662620069

Contact seller

Buy New

£ 192.64
£ 20.10 shipping
Ships from Germany to U.S.A.

Quantity: 2 available

Add to basket

Seller Image

Alan J. Lockett
Published by Springer Berlin Heidelberg, 2020
ISBN 10: 3662620065 ISBN 13: 9783662620069
New Hardcover

Seller: AHA-BUCH GmbH, Einbeck, Germany

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book examines the mismatch betweendiscrete programs,which lie at the center ofmodern applied mathematics, and the continuous space phenomena they simulate. The author considers whether we can imagine continuous spacesof programs, and asks what thestructure of such spaceswould beand how they would beconstituted. He proposesa functional analysisof program spaces focused through the lens of iterative optimization.The author begins with the observation that optimization methods such as Genetic Algorithms, Evolution Strategies, and Particle Swarm Optimization can be analyzed as Estimation of Distributions Algorithms (EDAs) in that they can be formulated as conditional probability distributions. The probabilities themselves are mathematical objects that can be compared and operated on, and thus many methods in Evolutionary Computation can be placed in a shared vector space and analyzed using techniques of functionalanalysis. The core ideas of this book expand from that concept, eventually incorporating all iterative stochastic search methods, including gradient-based methods. Inspired by work on Randomized Search Heuristics, the author covers all iterative optimization methods and not just evolutionary methods. The No Free Lunch Theorem is viewed as a useful introduction to the broader field of analysis that comes from developing a shared mathematical space for optimization algorithms. The author brings in intuitions from several branches of mathematics such as topology, probability theory, and stochastic processes and provides substantial background material to make the work as self-contained as possible.The book will be valuable for researchers in the areas of global optimization, machine learning, evolutionary theory, and control theory. Seller Inventory # 9783662620069

Contact seller

Buy New

£ 192.64
£ 56.93 shipping
Ships from Germany to U.S.A.

Quantity: 1 available

Add to basket

Seller Image

Lockett, Alan J.
Published by Springer, 2020
ISBN 10: 3662620065 ISBN 13: 9783662620069
Used Hardcover

Seller: GreatBookPrices, Columbia, MD, U.S.A.

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: As New. Unread book in perfect condition. Seller Inventory # 41780225

Contact seller

Buy Used

£ 210.22
£ 1.97 shipping
Ships within U.S.A.

Quantity: Over 20 available

Add to basket

Seller Image

Lockett, Alan J.
Published by Springer, 2020
ISBN 10: 3662620065 ISBN 13: 9783662620069
Used Hardcover

Seller: GreatBookPricesUK, Woodford Green, United Kingdom

Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

Condition: As New. Unread book in perfect condition. Seller Inventory # 41780225

Contact seller

Buy Used

£ 210.22
£ 15 shipping
Ships from United Kingdom to U.S.A.

Quantity: Over 20 available

Add to basket

There are 2 more copies of this book

View all search results for this book