GRAPHS, DIOIDS AND SEMIRINGS: New Models and Algorithms
Michel Gondran/ Michel Minoux
Sold by Revaluation Books, Exeter, United Kingdom
AbeBooks Seller since 6 January 2003
New - Hardcover
Condition: New
Quantity: 2 available
Add to basketSold by Revaluation Books, Exeter, United Kingdom
AbeBooks Seller since 6 January 2003
Condition: New
Quantity: 2 available
Add to basket1st edition. 388 pages. 9.25x6.25x1.00 inches. In Stock.
Seller Inventory # x-0387754490
The primary objective of this essential text is to emphasize the deep relations existing between the semiring and dioïd structures with graphs and their combinatorial properties. It does so at the same time as demonstrating the modeling and problem-solving flexibility of these structures. In addition the book provides an extensive overview of the mathematical properties employed by "nonclassical" algebraic structures which either extend usual algebra or form a new branch of it.
The origins of Graph Theory date back to Euler (1736) with the solution of the celebrated 'Koenigsberg Bridges Problem'; and to Hamilton with the famous 'Trip around the World' game (1859), stating for the first time a problem which, in its most recent version – the 'Traveling Salesman Problem' -, is still the subject of active research. Yet, it has been during the last fifty years or so―with the rise of the electronic computers―that Graph theory has become an indispensable discipline in terms of the number and importance of its applications across the Applied Sciences. Graph theory has been especially central to Theoretical and Algorithmic Computer Science, and Automatic Control, Systems Optimization, Economy and Operations Research, Data Analysis in the Engineering Sciences. Close connections between graphs and algebraic structures have been widely used in the analysis and implementation of efficient algorithms for many problems, for example: transportation network optimization, telecommunication network optimization and planning, optimization in scheduling and production systems, etc.
The primary objectives of GRAPHS, DIOÏDS AND SEMIRINGS: New Models and Algorithms are to emphasize the deep relations existing between the semiring and dioïd structures with graphs and their combinatorial properties, while demonstrating the modeling and problem-solving capability and flexibility of these structures. In addition the book provides an extensive overview of the mathematical properties employed by "nonclassical" algebraic structures, which either extend usual algebra (i.e., semirings), or correspond to a new branch of algebra (i.e., dioïds), apart from the classical structures of groups, rings, and fields.
"About this title" may belong to another edition of this title.
Legal entity name: Edward Bowditch Ltd
Legal entity form: Limited company
Business correspondence address: Exstowe, Exton, Exeter, EX3 0PP
Company registration number: 04916632
VAT registration: GB834241546
Authorised representative: Mr. E. Bowditch
Orders usually dispatched within two working days.
Order quantity | 2 to 5 business days | 2 to 5 business days |
---|---|---|
First item | £ 6.99 | £ 6.99 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.