Synopsis:
With the revolution in readily available computing power, the finite element method has become one of the most important tools for the modern engineer. This method of analyzing and modeling materials, structures, and forms is based on turning physical shapes into mathematical models made up from descriptive nodes, which can be manipulated using matrix methods. Examples include the new discipline of computational fluid dynamics, aerodynamic modeling, and the prediction of the behavior of components under load. The nature of matrix algebra means that these calculations can easily be performed using computer programs, thus making enormous savings in time and efficiency. It is vital that the engineer or engineering student fully understands the theory and knowledge that underpins the finite element method before it is possible to utilize it in practice. Professor Rao, who has many years of teaching experience at one of the country's leading centers of technical excellence, explains the topics from first principles, making use of numerous illustrations and examples and breaking the subject into easily absorbed segments which will guide the reader through the material in stages.
From the Back Cover:
Finite Element Analysis is an analytical engineering tool developed in the 1960's by the Aerospace and nuclear power industries to find usable, approximate solutions to problems with many complex variables. It is an extension of derivative and integral calculus, and uses very large matrix arrays and mesh diagrams to calculate stress points, movement of loads and forces, and other basic physical behaviors. Students will find in this textbook a thorough grounding of the mathematical principles underlying the popular, analytical methods for setting up a finite element solution based on those mathematical equations. It quickly bridges that knowledge to a host of real-world applications--from structural design, to problems in fluid mechanics and thermodynamics. Professional engineers will benefit from the introduction to the many useful applications of finite element analysis, and will gain a better understanding of its limitations and special uses.
New to this edition:
· New sections added on the assemblage of element equations, and an important new comparison between finite element analysis and other analytical methods...showing advantages and disadvantages of each
· Updated solutions manual available
· Improved sample and end-of-chapter problems|Finite Element Analysis is an analytical engineering tool developed in the 1960's by the Aerospace and nuclear power industries to find usable, approximate solutions to problems with many complex variables. It is an extension of derivative and integral calculus, and uses very large matrix arrays and mesh diagrams to calculate stress points, movement of loads and forces, and other basic physical behaviors. Students will find in this textbook a thorough grounding of the mathematical principles underlying the popular, analytical methods for setting up a finite element solution based on those mathematical equations. It quickly bridges that knowledge to a host of real-world applications--from structural design, to problems in fluid mechanics and thermodynamics. Professional engineers will benefit from the introduction to the many useful applications of finite element analysis, and will gain a better understanding of its limitations and special uses.
New to this edition:
· New sections added on the assemblage of element equations, and an important new comparison between finite element analysis and other analytical methods...showing advantages and disadvantages of each
· Updated solutions manual available
· Improved sample and end-of-chapter problems
"About this title" may belong to another edition of this title.