Federated Learning : Privacy and Incentive
Qiang Yang
From AHA-BUCH GmbH, Einbeck, Germany
Seller rating 5 out of 5 stars
AbeBooks Seller since 14 August 2006
New - Soft cover
Quantity: 1 available
Add to basketFrom AHA-BUCH GmbH, Einbeck, Germany
Seller rating 5 out of 5 stars
AbeBooks Seller since 14 August 2006
Quantity: 1 available
Add to basketAbout this Item
Druck auf Anfrage Neuware - Printed after ordering - This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR.This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, andneural network. Additionally, domain knowledge in FinTech and marketing would be helpful.'. Seller Inventory # 9783030630751
Bibliographic Details
Title: Federated Learning : Privacy and Incentive
Publisher: Springer International Publishing, Springer Nature Switzerland
Publication Date: 2020
Binding: Taschenbuch
Condition: Neu
About this title
This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications.
Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR.
This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”
This book contains three main parts. First, it introduces different privacy-preserving methods for protecting a Federated Learning model against different types of attacks such as Data Leakage and/or Data Poisoning. Second, the book presents incentive mechanisms which aim to encourage individuals to participate in the Federated Learning ecosystems. Last but not the least, this book also describeshow Federated Learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both academia and industries, who would like to learn federated learning from scratch, practice its implementation, and apply it in their own business.
Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing are preferred.
"About this title" may belong to another edition of this title.
Store Description
General Terms and Conditions and Customer Information / Privacy Policy
I. General Terms and Conditions
§ 1 Basic provisions
(1) The following terms and conditions apply to all contracts that you conclude with us as a provider (AHA-BUCH GmbH) via the Internet platforms AbeBooks and/or ZVAB. Unless otherwise agreed, the inclusion of any of your own terms and conditions used by you will be objected to
(2) A consumer within the meaning of the following regulations is any natural person who concludes...
More InformationWe ship your order after we received them
for articles on hand latest 24 hours,
for articles with overnight supply latest 48 hours.
In case we need to order an article from our supplier our dispatch time depends on the reception date of the articles, but the articles will be shipped on the same day.
Our goal is to send the ordered articles in the fastest, but also most efficient and secure way to our customers.
Payment Methods
accepted by seller