Deep Learning for NLP and Speech Recognition
Kamath, Uday; Liu, John; Whitaker, James
Sold by SMASS Sellers, IRVING, TX, U.S.A.
AbeBooks Seller since 22 February 2022
New - Soft cover
Condition: New
Quantity: 5 available
Add to basketSold by SMASS Sellers, IRVING, TX, U.S.A.
AbeBooks Seller since 22 February 2022
Condition: New
Quantity: 5 available
Add to basketBrand New Original US Edition. Customer service! Satisfaction Guaranteed.
Seller Inventory # ASNT3-27875
Machine Learning, NLP, and Speech Introduction
The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries.
Deep Learning Basics
The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks.
Advanced Deep Learning Techniques for Text and Speech
Uday Kamath has more than 20 years of experience architecting and building analytics-based commercial solutions. He currently works as the Chief Analytics Officer at Digital Reasoning, one of the leading companies in AI for NLP and Speech Recognition, heading the Applied Machine Learning research group. Most recently, Uday served as the Chief Data Scientist at BAE Systems Applied Intelligence, building machine learning products and solutions for the financial industry, focused on fraud, compliance, and cybersecurity. Uday has previously authored many books on machine learning such as Machine Learning: End-to-End guide for Java developers: Data Analysis, Machine Learning, and Neural Networks simplified and Mastering Java Machine Learning: A Java developer's guide to implementing machine learning and big data architectures. Uday has published many academic papers in different machine learning journals and conferences. Uday has a Ph.D. in Big Data Machine Learning and was one of the first in generalized scaling of machine learning algorithms using evolutionary computing.
John Liu spent the past 22 years managing quantitative research, portfolio management and data science teams. He is currently CEO of Intelluron Corporation, an emerging AI-as-a-service solution company. Most recently, John was head of data science and data strategy as VP at Digital Reasoning. Previously, he was CIO of Spartus Capital, a quantitative investment firm in New York. Prior to that, John held senior executive roles at Citigroup, where he oversaw the portfolio solutions group that advised institutional clients on quantitative investment and risk strategies; at the Indiana Public Employees pension, where he managed the $7B public equities portfolio; at Vanderbilt University, where he oversaw the $2B equity and alternative investment portfolios; and at BNP Paribas, where he managedthe US index options and MSCI delta-one trading desks. He is known for his expertise in reinforcement learning applied to investment management and has authored numerous papers and book chapters on topics including natural language processing, representation learning, systemic risk, asset allocation, and EM theory. In 2016, John was named Nashville's Data Scientist of the Year. He earned his B.S., M.S., and Ph.D. in electrical engineering from the University of Pennsylvania and is a CFA Charterholder.
James (Jimmy) Whitaker manages Applied Research at Digital Reasoning. He currently leads deep learning developments in speech analytics in the FinTech space, and has spent the last 4 years building machine learning applications for NLP, Speech Recognition, and Computer Vision. He received his masters in Computer Science from the University of Oxford, where he received a distinction for his application of machine learning in the field of Steganalysis after completing his undergraduate degrees in Electrical Engineering and Computer Science from Christian Brothers University. Prior to his work in deep learning, Jimmy worked as a concept engineer and risk manager for complex transportation initiatives.
"About this title" may belong to another edition of this title.
We sell Brand New Textbooks requied for studies in the Univesity. We have been in this business for the past 14 years and we know how to keep our customers happy and satisfies by providing them the required course material and the most affordable prices.
If you are a consumer you can cancel the contract in accordance with the following. Consumer means any natural person who is acting for purposes which are outside his trade, business, craft or profession.
INFORMATION REGARDING THE RIGHT OF CANCELLATION
Statutory Right to cancel
You have the right to cancel this contract within 14 days without giving any reason.
The cancellation period will expire after 14 days from the day on which you acquire, or a third party other than the carrier and indicated by you acquires, physical possession of the the last good or the last lot or piece.
To exercise the right to cancel, you must inform us, SMASS Sellers, 1944 LOMA LINDA DR., 75063-3924, IRVING, Texas, U.S.A., +1 4699865502, of your decision to cancel this contract by a clear statement (e.g. a letter sent by post, fax or e-mail). You may use the attached model cancellation form, but it is not obligatory. You can also electronically fill in and submit a clear statement on our website, under "My Purchases" in "My Account". If you use this option, we will communicate to you an acknowledgement of receipt of such a cancellation on a durable medium (e.g. by e-mail) without delay.
To meet the cancellation deadline, it is sufficient for you to send your communication concerning your exercise of the right to cancel before the cancellation period has expired.
Effects of cancellation
If you cancel this contract, we will reimburse to you all payments received from you, including the costs of delivery (except for the supplementary costs arising if you chose a type of delivery other than the least expensive type of standard delivery offered by us).
We may make a deduction from the reimbursement for loss in value of any goods supplied, if the loss is the result of unnecessary handling by you.
We will make the reimbursement without undue delay, and not later than 14 days after the day on which we are informed about your decision to cancel with contract.
We will make the reimbursement using the same means of payment as you used for the initial transaction, unless you have expressly agreed otherwise; in any event, you will not incur any fees as a result of such reimbursement.
We may withhold reimbursement until we have received the goods back or you have supplied evidence of having sent back the goods, whichever is the earliest.
You shall send back the goods or hand them over to us or SMASS Sellers, 1944 LOMA LINDA DR., 75063-3924, IRVING, Texas, U.S.A., +1 4699865502, without undue delay and in any event not later than 14 days from the day on which you communicate your cancellation from this contract to us. The deadline is met if you send back the goods before the period of 14 days has expired. You will have to bear the direct cost of returning the goods. You are only liable for any diminished value of the goods resulting from the handling other than what is necessary to establish the nature, characteristics and functioning of the goods.
Exceptions to the right of cancellation
The right of cancellation does not apply to:
Model withdrawal form
(complete and return this form only if you wish to withdraw from the contract)
To: (SMASS Sellers, 1944 LOMA LINDA DR., 75063-3924, IRVING, Texas, U.S.A., +1 4699865502)
I/We (*) hereby give notice that I/We (*) withdraw from my/our (*) contract of sale of the following goods (*)/for the provision of the following goods (*)/for the provision of the following service (*),
Ordered on (*)/received on (*)
Name of consumer(s)
Address of consumer(s)
Signature of consumer(s) (only if this form is notified on paper)
Date
* Delete as appropriate.
We ship all orders from our Multiple warehouses by Tracakble method only. We have tie up with Fedex, DHL, UPS and USPS for our logistics requirements. All tracking numbers are available within 48 hours of processing the order.
| Order quantity | 5 to 10 business days | 3 to 6 business days |
|---|---|---|
| First item | £ 0.00 | £ 0.00 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.