Deep Learning for Crack-Like Object Detection
Zhang, Kaige; Cheng, Heng-Da
Sold by GreatBookPricesUK, Woodford Green, United Kingdom
AbeBooks Seller since 28 January 2020
New - Hardcover
Condition: New
Quantity: Over 20 available
Add to basketSold by GreatBookPricesUK, Woodford Green, United Kingdom
AbeBooks Seller since 28 January 2020
Condition: New
Quantity: Over 20 available
Add to basketComputer vision-based crack-like object detection has many useful applications, such as inspecting/monitoring pavement surface, underground pipeline, bridge cracks, railway tracks etc. However, in most contexts, cracks appear as thin, irregular long-narrow objects, and often are buried in complex, textured background with high diversity which make the crack detection very challenging. During the past a few years, deep learning technique has achieved great success and has been utilized for solving a variety of object detection problems.
This book discusses crack-like object detection problem comprehensively. It starts by discussing traditional image processing approaches for solving this problem, and then introduces deep learning-based methods. It provides a detailed review of object detection problems and focuses on the most challenging problem, crack-like object detection, to dig deep into the deep learning method. It includes examples of real-world problems, which are easy to understand and could be a good tutorial for introducing computer vision and machine learning.
Kaige Zhang has a B.S. degree (2011) in electronic engineering from the Harbin Institute of Technology, China, and a Ph.D. degree (2019) in computer science from Utah State University, USA. His research interests include computer vision, machine learning, and the applications on intelligent transportation systems, precision agriculture, and biomedical data analytics. Dr. Zhang has been the reviewer for many top journals in his research areas, such as IEEE Transactions on ITS, IEEE Trans. On T-IV, J. of Comput. in Civil Eng., Scientific Report, etc.
Heng-Da Cheng has a Ph.D. in Electrical Engineering from Purdue University, West Lafayette, IN, USA in 1985 under the supervision Prof. K. S. Fu. He is a Full Professor with the Department of Computer Science, Utah State University, Logan, UT. He has authored over 350 technical papers and is the Associate Editor of Pattern Recognition, Information Sciences, and New Mathematics and Natural Computation.
"About this title" may belong to another edition of this title.
Company Name: GreatBookPricesUK
Legal Entity: Far Corner Europe Limited
Address: 19-20 Bourne Court, Southend Road, Woodford Green Essex, UK IG8 8HD
Registration #: 10691061
Authorized representative: Danielle Hainsey
Our warehouses across the globe are fully operational without substantial delays. We are working hard and continue to overcome the daily challenges presented by COVID-19. There have been reports that delivery carriers are experiencing large delays resulting in longer than normal deliveries to customers. We would like to apologize in advance if your item arrives later than the expected delivery due date.
Internal processing of your order will take about 1-2 business days. Please allow an additional 4-14 business days for Royal Mail delivery.
Order quantity | 5 to 14 business days | 5 to 14 business days |
---|---|---|
First item | £ 0.00 | £ 0.00 |
Delivery times are set by sellers and vary by carrier and location. Orders passing through Customs may face delays and buyers are responsible for any associated duties or fees. Sellers may contact you regarding additional charges to cover any increased costs to ship your items.